Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan Piwowarski is active.

Publication


Featured researches published by Jan Piwowarski.


Journal of Biological Chemistry | 2003

The Yeast Mitochondrial Degradosome ITS COMPOSITION, INTERPLAY BETWEEN RNA HELICASE AND RNase ACTIVITIES AND THE ROLE IN MITOCHONDRIAL RNA METABOLISM

Andrzej Dziembowski; Jan Piwowarski; Rafal Hoser; Michal Minczuk; Aleksandra Dmochowska; Michel Siep; Hans van der Spek; Les Grivell; Piotr P. Stepien

The yeast mitochondrial degradosome (mtEXO) is an NTP-dependent exoribonuclease involved in mitochondrial RNA metabolism. Previous purifications suggested that it was composed of three subunits. Our results suggest that the degradosome is composed of only two large subunits: an RNase and a RNA helicase encoded by nuclear genes DSS1 and SUV3, respectively, and that it co-purifies with mitochondrial ribosomes. We have found that the purified degradosome has RNA helicase activity that precedes and is essential for exoribonuclease activity of this complex. The degradosome RNase activity is necessary for mitochondrial biogenesis but in vitro the degradosome without RNase activity is still able to unwind RNA. In yeast strains lacking degradosome components there is a strong accumulation of mitochondrial mRNA and rRNA precursors not processed at 3′- and 5′-ends. The observed accumulation of precursors is probably the result of lack of degradation rather than direct inhibition of processing. We suggest that the degradosome is a central part of a mitochondrial RNA surveillance system responsible for degradation of aberrant and unprocessed RNAs.


Journal of Molecular Biology | 2003

Human Polynucleotide Phosphorylase, hPNPase, is Localized in Mitochondria

Jan Piwowarski; Pawel Grzechnik; Andrzej Dziembowski; Aleksandra Dmochowska; Michal Minczuk; Piotr P. Stepien

The human gene encoding a polynucleotide phosphorylase (hPNPase) has been recently identified as strongly up-regulated in two processes leading to irreversible arrest of cell division: progeroid senescence and terminal differentiation. Here, we demonstrate that the hPNPase is localized in mitochondria. Our finding suggests the involvement of mitochondrial RNA metabolism in cellular senescence.


Reproductive Biology | 2014

Intrauterine growth retarded piglet as a model for humans--studies on the perinatal development of the gut structure and function.

Karolina Ferenc; Piotr Pietrzak; Michal M. Godlewski; Jan Piwowarski; Robert Kilianczyk; P. Guilloteau; R. Zabielski

The overall acceptance of pig models for human biomedical studies is steadily growing. Results of rodent studies are usually confirmed in pigs before extrapolating them to humans. This applies particularly to gastrointestinal and metabolism research due to similarities between pig and human physiology. In this context, intrauterine growth retarded (IUGR) pig neonate can be regarded as a good model for the better understanding of the IUGR syndrome in humans. In pigs, the induction of IUGR syndrome may include maternal diet intervention, dexamethasone treatment or temporary reduction of blood supply. However, in pigs, like in humans, circa 8% of neonates develop IUGR syndrome spontaneously. Studies on the pig model have shown changes in gut structure, namely a reduced thickness of mucosa and muscle layers, and delayed kinetic of disappearance of vacuolated enterocytes were found in IUGR individuals in comparison with healthy ones. Functional changes include reduced dynamic of gut mucosa rebuilding, decreased activities of main brush border enzymes, and changes in the expression of proteins important for carbohydrate, amino acids, lipid, mineral and vitamin metabolism. Moreover, profiles of intestinal hormones are different in IUGR and non-IUGR piglets. It is suggested that supplementation of the mothers during the gestation and/or the IUGR offspring after birth can help in restoring the development of the gastrointestinal tract. The pig provides presumably the optimal animal model for humans to study gastrointestinal tract structure and function development in IUGR syndrome.


PLOS ONE | 2012

Novel AlkB Dioxygenases—Alternative Models for In Silico and In Vivo Studies

Damian Mielecki; Dorota Łucja Zugaj; Anna Muszewska; Jan Piwowarski; Aleksandra Chojnacka; Marcin Mielecki; Jadwiga Nieminuszczy; Marcin Grynberg; Elżbieta Grzesiuk

Background ALKBH proteins, the homologs of Escherichia coli AlkB dioxygenase, constitute a direct, single-protein repair system, protecting cellular DNA and RNA against the cytotoxic and mutagenic activity of alkylating agents, chemicals significantly contributing to tumor formation and used in cancer therapy. In silico analysis and in vivo studies have shown the existence of AlkB homologs in almost all organisms. Nine AlkB homologs (ALKBH1–8 and FTO) have been identified in humans. High ALKBH levels have been found to encourage tumor development, questioning the use of alkylating agents in chemotherapy. The aim of this work was to assign biological significance to multiple AlkB homologs by characterizing their activity in the repair of nucleic acids in prokaryotes and their subcellular localization in eukaryotes. Methodology and Findings Bioinformatic analysis of protein sequence databases identified 1943 AlkB sequences with eight new AlkB subfamilies. Since Cyanobacteria and Arabidopsis thaliana contain multiple AlkB homologs, they were selected as model organisms for in vivo research. Using E. coli alkB − mutant and plasmids expressing cyanobacterial AlkBs, we studied the repair of methyl methanesulfonate (MMS) and chloroacetaldehyde (CAA) induced lesions in ssDNA, ssRNA, and genomic DNA. On the basis of GFP fusions, we investigated the subcellular localization of ALKBHs in A. thaliana and established its mostly nucleo-cytoplasmic distribution. Some of the ALKBH proteins were found to change their localization upon MMS treatment. Conclusions Our in vivo studies showed highly specific activity of cyanobacterial AlkB proteins towards lesions and nucleic acid type. Subcellular localization and translocation of ALKBHs in A. thaliana indicates a possible role for these proteins in the repair of alkyl lesions. We hypothesize that the multiplicity of ALKBHs is due to their involvement in the metabolism of nucleo-protein complexes; we find their repair by ALKBH proteins to be economical and effective alternative to degradation and de novo synthesis.


Structure | 2010

Systematic bioinformatics and experimental validation of yeast complexes reduces the rate of attrition during structural investigations.

Mark A. Brooks; Kamil Gewartowski; Eirini Mitsiki; Juliette Létoquart; Roland A. Pache; Ysaline Billier; Michela G. Bertero; Margot Corréa; Mariusz Czarnocki-Cieciura; Michal Dadlez; Véronique Henriot; Noureddine Lazar; Lila Delbos; Dorothée Lebert; Jan Piwowarski; Pascal Rochaix; Bettina Böttcher; Luis Serrano; Bertrand Séraphin; Herman van Tilbeurgh; Patrick Aloy; Anastassis Perrakis; Andrzej Dziembowski

For high-throughput structural studies of protein complexes of composition inferred from proteomics data, it is crucial that candidate complexes are selected accurately. Herein, we exemplify a procedure that combines a bioinformatics tool for complex selection with in vivo validation, to deliver structural results in a medium-throughout manner. We have selected a set of 20 yeast complexes, which were predicted to be feasible by either an automated bioinformatics algorithm, by manual inspection of primary data, or by literature searches. These complexes were validated with two straightforward and efficient biochemical assays, and heterologous expression technologies of complex components were then used to produce the complexes to assess their feasibility experimentally. Approximately one-half of the selected complexes were useful for structural studies, and we detail one particular success story. Our results underscore the importance of accurate target selection and validation in avoiding transient, unstable, or simply nonexistent complexes from the outset.


PLOS ONE | 2013

Pseudomonas putida AlkA and AlkB Proteins Comprise Different Defense Systems for the Repair of Alkylation Damage to DNA – In Vivo, In Vitro, and In Silico Studies

Damian Mielecki; Signe Saumaa; Michał Wrzesiński; Agnieszka M. Maciejewska; Karolina Żuchniewicz; Anna Sikora; Jan Piwowarski; Jadwiga Nieminuszczy; Maia Kivisaar; Elżbieta Grzesiuk

Alkylating agents introduce cytotoxic and/or mutagenic lesions to DNA bases leading to induction of adaptive (Ada) response, a mechanism protecting cells against deleterious effects of environmental chemicals. In Escherichia coli, the Ada response involves expression of four genes: ada, alkA, alkB, and aidB. In Pseudomonas putida, the organization of Ada regulon is different, raising questions regarding regulation of Ada gene expression. The aim of the presented studies was to analyze the role of AlkA glycosylase and AlkB dioxygenase in protecting P. putida cells against damage to DNA caused by alkylating agents. The results of bioinformatic analysis, of survival and mutagenesis of methyl methanesulfonate (MMS) or N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) treated P. putida mutants in ada, alkA and alkB genes as well as assay of promoter activity revealed diverse roles of Ada, AlkA and AlkB proteins in protecting cellular DNA against alkylating agents. We found AlkA protein crucial to abolish the cytotoxic but not the mutagenic effects of alkylans since: (i) the mutation in the alkA gene was the most deleterious for MMS/MNNG treated P. putida cells, (ii) the activity of the alkA promoter was Ada-dependent and the highest among the tested genes. P. putida AlkB (PpAlkB), characterized by optimal conditions for in vitro repair of specific substrates, complementation assay, and M13/MS2 survival test, allowed to establish conservation of enzymatic function of P. putida and E. coli AlkB protein. We found that the organization of P. putida Ada regulon differs from that of E. coli. AlkA protein induced within the Ada response is crucial for protecting P. putida against cytotoxicity, whereas Ada prevents the mutagenic action of alkylating agents. In contrast to E. coli AlkB (EcAlkB), PpAlkB remains beyond the Ada regulon and is expressed constitutively. It probably creates a backup system that protects P. putida strains defective in other DNA repair systems against alkylating agents of exo- and endogenous origin.


Chemical Papers | 2017

Correction to: 2 ′ -Deoxy-2 ′ -azidonucleoside analogs: synthesis and evaluation of antitumor and antimicrobial activity

Adam Mieczkowski; Patrycja Wińska; Marta Kaczmarek; Magdalena Mroczkowska; Damian Garbicz; Tomasz Pilżys; Michał Marcinkowski; Jan Piwowarski; Elżbieta Grzesiuk

The original version of this article unfortunately contained a mistake.


Cell & Bioscience | 2017

Hypoxic 3D in vitro culture models reveal distinct resistance processes to TKIs in renal cancer cells

Zofia F. Bielecka; Agata Malinowska; Klaudia K. Brodaczewska; Aleksandra Klemba; Claudine Kieda; Paweł Krasowski; Elżbieta Grzesiuk; Jan Piwowarski; Anna M. Czarnecka; Cezary Szczylik

BackgroundThe aim of this study is to determine the effect of hypoxia on axitinib and sorafenib-treated renal cell carcinoma (RCC) cells. Hypoxia is a crucial factor influencing transcription process via protein modulation, which was shown i.e. in pancreatic cancer. Until now, hypoxia has been defined as associated with poorer outcome and inducing chemotherapy resistance in solid tumors. The unique phenomenon of pseudo-hypoxia connected with vhl mutation was observed in clear-cell, but not in papillary RCC, and the treatment of this subtype of cancer is still challenging. Despite the introduction of new antiangiogenic targeted therapies (inter alia tyrosine kinase inhibitors, TKIs), patients still develop both primary and acquired resistance. Overcoming resistance to TKIs, also in papillary RCC, may be possible by finding significantly modified protein expression. To do this, hypoxic 3D in vitro models must be developed to mimic both molecular pathways typical for low oxygen tension and cell–cell dynamics in tumor-like spatial structures.ResultsClear-cell and papillary renal cell carcinoma (cc and pRCC) cell lines were used in the study to determine the impact of hypoxia on primary drug resistance phenomenon previously observed in papillary, but not in ccRCC. Resistance was confirmed in monolayer culture and in 3D models in soft agar and suspension culture. Human papillary kidney cancer stem-like cells (HKCSCs) cultured in hypoxia developed resistance to sorafenib, while when cultured in normoxia resistance to axitinib has developed. Flow cytometry revealed that hypoxia decreased proliferation rates in all investigated RCC cells. In HKCSCs, there was an increase of quiescent cells (Ki67−) and percentage of cells arrested in S phase. It also appeared that map2k1 and eif4b protein expression is altered in papillary RCC resistant to tested drugs at different oxygen tensions. Also, HKCSCs did not express vegfr-1, braf nor c-kit, TKIs target receptors, which were present in ccRCC cells sensitive to TKI treatment.ConclusionsThe results confirm that low oxygen tension affects RCC cells. Hypoxia facilitates induction of sorafenib resistance in pRCC and induces map2k1 overexpression, while normoxic axitinib-resistant cells up-regulated eif4b. Further studies may determine if map2k1 or eif4b proteins play a role in pRCC resistance to TKIs. It is also of interest to establish if other than vegfr-1, braf, c-kit receptors can serve as potential molecular targets for more effective anti-RCC strategies.


Molecular Biotechnology | 2015

Adenovirus Dodecahedron, a VLP, Can be Purified by Size Exclusion Chromatography Instead of Time-Consuming Sucrose Density Gradient Centrifugation.

Inga Szurgot; Marta Jedynak; Malgorzata Podsiadla-Bialoskorska; Jan Piwowarski; Ewa Szolajska; Jadwiga Chroboczek

Adenoviral dodecahedron (Dd) is a virus-like particle composed of twelve pentameric penton base (Pb) proteins, responsible for adenovirus cell penetration. It is generated spontaneously in the baculovirus system upon expression of the Pb gene of adenovirus serotype 3. This particle shows remarkable cell penetration ability with 2,00,000–3,00,000 Dd internalized into one cell in culture, conceivably delivering several millions of foreign cargo molecules to the target cell. We have used it in the past for delivery of small drugs as well as a vaccination platform, in which Dd serves as a particulate vaccine delivery system. Since development of new biomedicals depends strongly on the cost of their expression and purification, we attempted, albeit unsuccessfully, to obtain Dd expression in bacteria. We therefore retained its expression in the baculovirus/insect cells system but introduced significant improvements in the protocols for Dd expression and purification, leading to considerable savings in time and improved yield.


Current Cancer Drug Targets | 2018

Evaluation of anti-cancer activity of stilbene and methoxydibenzo[b,f]oxepin derivatives

Damian Garbicz; Damian Mielecki; Michał Wrzesiński; Tomasz Pilżys; Michał Marcinkowski; Jan Piwowarski; Janusz Dębski; Ewelina Palak; Przemysław Szczeciński; Hanna Krawczyk; Elżbieta Grzesiuk

BACKGROUND Stilbenes, 1,2-diphenylethen derivatives, including resveratrol and combretastatins, show anticancer features especially against tumor angiogenesis. Fosbretabulin, CA-4, in combination with carboplatin, is in the last stages of clinical tests as an inhibitor of thyroid cancer. The mode of action of these compounds involves suppression of angiogenesis through interfering with tubulin (de)polymerization. OBJECTIVE We have previously synthesized five E-2-hydroxystilbenes and seven dibenzo [b,f]oxepins in Z configuration, with methyl or nitro groups at varied positions. The aim of the present work was to evaluate the anticancer activity and molecular mechanism(s) of action of these compounds. RESULTS Two healthy, EUFA30 and HEK293, and two cancerous, HeLa and U87, cell lines were treated with four newly synthetized stilbenes and seven oxepins. Two of these compounds, JJR5 and JJR6, showed the strongest cytotoxic effect against cancerous cells tested and these two were selected for further investigations. They induced apoptosis with sub-G1 or S cell cycle arrest and PARP cleavage, with no visible activation of caspases 3 and 7. Proteomic differential analysis of stilbene-treated cells led to the identification of proteins involved almost exclusively in cell cycle management, apoptosis, DNA repair and stress response, e.g. oxidative stress. CONCLUSION Among the newly synthesized stilbene derivatives, we selected two as potent anticancer compounds triggering late apoptosis/necrosis in cancerous cells through sub-G1 phase cell cycle arrest. They changed cyclin expression, induced DNA repair mechanisms, enzymes involved in apoptosis and oxidative stress response. Compounds JJR5 and JJR6 can be a base for structure modification(s) to obtain even more active derivatives.

Collaboration


Dive into the Jan Piwowarski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damian Garbicz

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Damian Mielecki

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Piotr P. Stepien

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tomasz Pilżys

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michal Minczuk

MRC Mitochondrial Biology Unit

View shared research outputs
Researchain Logo
Decentralizing Knowledge