Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jadwiga Nieminuszczy is active.

Publication


Featured researches published by Jadwiga Nieminuszczy.


Mutation Research | 2010

Chloroacetaldehyde-induced mutagenesis in Escherichia coli: The role of AlkB protein in repair of 3,N4-ethenocytosine and 3,N4-α-hydroxyethanocytosine

Agnieszka M. Maciejewska; Karol P. Ruszel; Jadwiga Nieminuszczy; Joanna Lewicka; Beata Sokołowska; Elżbieta Grzesiuk; Jarosław T. Kuśmierek

Etheno (epsilon) adducts are formed in reaction of DNA bases with various environmental carcinogens and endogenously created products of lipid peroxidation. Chloroacetaldehyde (CAA), a metabolite of carcinogen vinyl chloride, is routinely used to generate epsilon-adducts. We studied the role of AlkB, along with AlkA and Mug proteins, all engaged in repair of epsilon-adducts, in CAA-induced mutagenesis. The test system used involved pIF102 and pIF104 plasmids bearing the lactose operon of CC102 or CC104 origin (Cupples and Miller (1989) [17]) which allowed to monitor Lac(+) revertants, the latter arose by GC-->AT or GC-->TA substitutions, respectively, as a result of modification of guanine and cytosine. The plasmids were CAA-damaged in vitro and replicated in Escherichia coli of various genetic backgrounds. To modify the levels of AlkA and AlkB proteins, mutagenesis was studied in E. coli cells induced or not in adaptive response. Formation of varepsilonC proceeds via a relatively stable intermediate, 3,N(4)-alpha-hydroxyethanocytosine (HEC), which allowed to compare repair of both adducts. The results indicate that all three genes, alkA, alkB and microg, are engaged in alleviation of CAA-induced mutagenesis. The frequency of mutation was higher in AlkA-, AlkB- and Mug-deficient strains in comparison to alkA(+), alkB(+), and microg(+) controls. Considering the levels of CAA-induced Lac(+) revertants in strains harboring the pIF plasmids and induced or not in adaptive response, we conclude that AlkB protein is engaged in the repair of epsilonC and HEC in vivo. Using the modified TTCTT 5-mers as substrates, we confirmed in vitro that AlkB protein repairs epsilonC and HEC although far less efficiently than the reference adduct 3-methylcytosine. The pH optimum for repair of HEC and epsilonC is significantly different from that for 3-methylcytosine. We propose that the protonated form of adduct interact in active site of AlkB protein.


PLOS ONE | 2012

Novel AlkB Dioxygenases—Alternative Models for In Silico and In Vivo Studies

Damian Mielecki; Dorota Łucja Zugaj; Anna Muszewska; Jan Piwowarski; Aleksandra Chojnacka; Marcin Mielecki; Jadwiga Nieminuszczy; Marcin Grynberg; Elżbieta Grzesiuk

Background ALKBH proteins, the homologs of Escherichia coli AlkB dioxygenase, constitute a direct, single-protein repair system, protecting cellular DNA and RNA against the cytotoxic and mutagenic activity of alkylating agents, chemicals significantly contributing to tumor formation and used in cancer therapy. In silico analysis and in vivo studies have shown the existence of AlkB homologs in almost all organisms. Nine AlkB homologs (ALKBH1–8 and FTO) have been identified in humans. High ALKBH levels have been found to encourage tumor development, questioning the use of alkylating agents in chemotherapy. The aim of this work was to assign biological significance to multiple AlkB homologs by characterizing their activity in the repair of nucleic acids in prokaryotes and their subcellular localization in eukaryotes. Methodology and Findings Bioinformatic analysis of protein sequence databases identified 1943 AlkB sequences with eight new AlkB subfamilies. Since Cyanobacteria and Arabidopsis thaliana contain multiple AlkB homologs, they were selected as model organisms for in vivo research. Using E. coli alkB − mutant and plasmids expressing cyanobacterial AlkBs, we studied the repair of methyl methanesulfonate (MMS) and chloroacetaldehyde (CAA) induced lesions in ssDNA, ssRNA, and genomic DNA. On the basis of GFP fusions, we investigated the subcellular localization of ALKBHs in A. thaliana and established its mostly nucleo-cytoplasmic distribution. Some of the ALKBH proteins were found to change their localization upon MMS treatment. Conclusions Our in vivo studies showed highly specific activity of cyanobacterial AlkB proteins towards lesions and nucleic acid type. Subcellular localization and translocation of ALKBHs in A. thaliana indicates a possible role for these proteins in the repair of alkyl lesions. We hypothesize that the multiplicity of ALKBHs is due to their involvement in the metabolism of nucleo-protein complexes; we find their repair by ALKBH proteins to be economical and effective alternative to degradation and de novo synthesis.


Journal of Biological Chemistry | 2013

AlkB Dioxygenase Preferentially Repairs Protonated Substrates SPECIFICITY AGAINST EXOCYCLIC ADDUCTS AND MOLECULAR MECHANISM OF ACTION

Agnieszka M. Maciejewska; Jarosław Poznański; Zuzanna Kaczmarska; Beata Krowisz; Jadwiga Nieminuszczy; Agnieszka Polkowska-Nowakowska; Elżbieta Grzesiuk; Jaroslaw T. Kusmierek

Background: AlkB dioxygenase removes alkyl and exocyclic lesions via an oxidative mechanism, restoring the native DNA bases. Results: AlkB repair efficiency is pH- and Fe(II) concentration-dependent, which correlates with the substrate pKa. Conclusion: AlkB recognizes and repairs protonated substrates. Significance: This study provides experimental evidence for the molecular mechanism of action of AlkB. Efficient repair by Escherichia coli AlkB dioxygenase of exocyclic DNA adducts 3,N4-ethenocytosine, 1,N6-ethenoadenine, 3,N4-α-hydroxyethanocytosine, and reported here for the first time 3,N4-α-hydroxypropanocytosine requires higher Fe(II) concentration than the reference 3-methylcytosine. The pH optimum for the repair follows the order of pKa values for protonation of the adduct, suggesting that positively charged substrates favorably interact with the negatively charged carboxylic group of Asp-135 side chain in the enzyme active center. This interaction is supported by molecular modeling, indicating that 1,N6-ethenoadenine and 3,N4-ethenocytosine are bound to AlkB more favorably in their protonated cationic forms. An analysis of the pattern of intermolecular interactions that stabilize the location of the ligand points to a role of Asp-135 in recognition of the adduct in its protonated form. Moreover, ab initio calculations also underline the role of substrate protonation in lowering the free energy barrier of the transition state of epoxidation of the etheno adducts studied. The observed time courses of repair of mixtures of stereoisomers of 3,N4-α-hydroxyethanocytosine or 3,N4-α-hydroxypropanocytosine are unequivocally two-exponential curves, indicating that the respective isomers are repaired by AlkB with different efficiencies. Molecular modeling of these adducts bound by AlkB allowed evaluation of the participation of their possible conformational states in the enzymatic reaction.


Environmental and Molecular Mutagenesis | 2009

Mutagenic potency of MMS-induced 1meA/3meC lesions in E. coli.

Jadwiga Nieminuszczy; Damian Mielecki; Anna Sikora; Michał Wrzesiński; Aleksandra Chojnacka; Joanna Krwawicz; Celina Janion; Elżbieta Grzesiuk

The mutagenic activity of MMS in E. coli depends on the susceptibility of DNA bases to methylation and their repair by cellular defense systems. Among the lesions in methylated DNA is 1meA/3meC, which is recently recognized as being mutagenic. In this report, special attention is focused on the mutagenic properties of 1meA/3meC which, by the activity of AlkB‐dioxygenase, are quickly and efficiently converted to natural A/C bases in the DNA of E. coli alkB+ strains, preventing 1meA/3meC‐induced mutations. We have found that in the absence of AlkB‐mediated repair, MMS treatment results in an increased frequency of four types of base substitutions: GC→CG, GC→TA, AT→CG, and AT→TA, whereas overproduction of PolV in CC101–106 alkB−/pRW134 strains leads to a markedly elevated level of GC→TA, GC→CG, and AT→TA transversions. It has been observed that in the case of AB1157 alkB− strains, the MMS‐induced and 1meA/3meC‐dependent argE3→Arg+ reversion occurs efficiently, whereas lacZ−→ Lac+ reversion in a set of CC101–106 alkB− strains occurs with much lower frequency. We considered several reasons for this discrepancy, namely, the possible variance in the level of the PolV activity, the effect of the PolIV contents that is higher in CC101–106 than in AB1157 strains and the different genetic cell backgrounds in CC101–106 alkB− and AB1157 alkB− strains, respectively. We postulate that the difference in the number of targets undergoing mutation and different reactivity of MMS with ssDNA and dsDNA are responsible for the high (argE3→Arg+) and low (lacZ− → Lac+) frequency of MMS—induced mutations. Environ. Mol. Mutagen. 2009.


PLOS ONE | 2013

Pseudomonas putida AlkA and AlkB Proteins Comprise Different Defense Systems for the Repair of Alkylation Damage to DNA – In Vivo, In Vitro, and In Silico Studies

Damian Mielecki; Signe Saumaa; Michał Wrzesiński; Agnieszka M. Maciejewska; Karolina Żuchniewicz; Anna Sikora; Jan Piwowarski; Jadwiga Nieminuszczy; Maia Kivisaar; Elżbieta Grzesiuk

Alkylating agents introduce cytotoxic and/or mutagenic lesions to DNA bases leading to induction of adaptive (Ada) response, a mechanism protecting cells against deleterious effects of environmental chemicals. In Escherichia coli, the Ada response involves expression of four genes: ada, alkA, alkB, and aidB. In Pseudomonas putida, the organization of Ada regulon is different, raising questions regarding regulation of Ada gene expression. The aim of the presented studies was to analyze the role of AlkA glycosylase and AlkB dioxygenase in protecting P. putida cells against damage to DNA caused by alkylating agents. The results of bioinformatic analysis, of survival and mutagenesis of methyl methanesulfonate (MMS) or N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) treated P. putida mutants in ada, alkA and alkB genes as well as assay of promoter activity revealed diverse roles of Ada, AlkA and AlkB proteins in protecting cellular DNA against alkylating agents. We found AlkA protein crucial to abolish the cytotoxic but not the mutagenic effects of alkylans since: (i) the mutation in the alkA gene was the most deleterious for MMS/MNNG treated P. putida cells, (ii) the activity of the alkA promoter was Ada-dependent and the highest among the tested genes. P. putida AlkB (PpAlkB), characterized by optimal conditions for in vitro repair of specific substrates, complementation assay, and M13/MS2 survival test, allowed to establish conservation of enzymatic function of P. putida and E. coli AlkB protein. We found that the organization of P. putida Ada regulon differs from that of E. coli. AlkA protein induced within the Ada response is crucial for protecting P. putida against cytotoxicity, whereas Ada prevents the mutagenic action of alkylating agents. In contrast to E. coli AlkB (EcAlkB), PpAlkB remains beyond the Ada regulon and is expressed constitutively. It probably creates a backup system that protects P. putida strains defective in other DNA repair systems against alkylating agents of exo- and endogenous origin.


Mutation Research | 2010

Contribution of transcription-coupled DNA repair to MMS-induced mutagenesis in E. coli strains deficient in functional AlkB protein

Michał Wrzesiński; Jadwiga Nieminuszczy; Anna Sikora; Damian Mielecki; Aleksandra Chojnacka; Marek Kozłowski; Joanna Krwawicz; Elżbieta Grzesiuk

In Escherichia coli the alkylating agent methyl methanesulfonate (MMS) induces defense systems (adaptive and SOS responses), DNA repair pathways, and mutagenesis. We have previously found that AlkB protein induced as part of the adaptive (Ada) response protects cells from the genotoxic and mutagenic activity of MMS. AlkB is a non-heme iron (II), alpha-ketoglutarate-dependent dioxygenase that oxidatively demethylates 1meA and 3meC lesions in DNA, with recovery of A and C. Here, we studied the impact of transcription-coupled DNA repair (TCR) on MMS-induced mutagenesis in E. coli strain deficient in functional AlkB protein. Measuring the decline in the frequency of MMS-induced argE3-->Arg(+) revertants under transient amino acid starvation (conditions for TCR induction), we have found a less effective TCR in the BS87 (alkB(-)) strain in comparison with the AB1157 (alkB(+)) counterpart. Mutation in the mfd gene encoding the transcription-repair coupling factor Mfd, resulted in weaker TCR in MMS-treated and starved AB1157 mfd-1 cells in comparison to AB1157 mfd(+), and no repair in BS87 mfd(-) cells. Determination of specificity of Arg(+) revertants allowed to conclude that MMS-induced 1meA and 3meC lesions, unrepaired in bacteria deficient in AlkB, are the source of mutations. These include AT-->TA transversions by supL suppressor formation (1meA) and GC-->AT transitions by supB or supE(oc) formation (3meC). The repair of these lesions is partly Mfd-dependent in the AB1157 mfd-1 and totally Mfd-dependent in the BS87 mfd-1 strain. The nucleotide sequence of the mfd-1 allele shows that the mutated Mfd-1 protein, deprived of the C-terminal translocase domain, is unable to initiate TCR. It strongly enhances the SOS response in the alkB(-)mfd(-) bacteria but not in the alkB(+)mfd(-) counterpart.


DNA Repair | 2016

Evaluation of the Escherichia coli HK82 and BS87 strains as tools for AlkB studies

Damian Mielecki; Anna Sikora; Michał Wrzesiński; Jadwiga Nieminuszczy; A. Detman; K. Żuchniewicz; R. Gromadka; Elżbieta Grzesiuk

Within a decade the family of AlkB dioxygenases has been extensively studied as a one-protein DNA/RNA repair system in Escherichia coli but also as a group of proteins of much wider functions in eukaryotes. Two strains, HK82 and BS87, are the most commonly used E. coli strains for the alkB gene mutations. The aim of this study was to assess the usefulness of these alkB mutants in different aspects of research on AlkB dioxygenases that function not only in alkylated DNA repair but also in other metabolic processes in cells. Using of HK82 and BS87 strains, we found the following differences among these alkB(-) derivatives: (i) HK82 has shown more than 10-fold higher MMS-induced mutagenesis in comparison to BS87; (ii) different specificity of Arg(+) revertants; (iii) increased induction of SOS and Ada responses in HK82; (iv) the genome of HK82, in comparison to AB1157 and BS87, contains additional mutations: nalA, sbcC, and nuoC. We hypothesize that in HK82 these mutations, together with the non-functional AlkB protein, may result in much higher contents of ssDNA, thus higher in comparison to BS87 MMS-induced mutagenesis. In the light of our findings, we strongly recommend using BS87 strain in AlkB research as HK82, bearing several additional mutations in its genome, is not an exact derivative of the AB1157 strain, and shows additional features that may disturb proper interpretation of obtained results.


Acta Biochimica Polonica | 2007

Bacterial DNA repair genes and their eukaryotic homologues: 3. AlkB dioxygenase and Ada methyltransferase in the direct repair of alkylated DNA *

Jadwiga Nieminuszczy; Elżbieta Grzesiuk


Mutagenesis | 2010

Lethal and mutagenic properties of MMS-generated DNA lesions in Escherichia coli cells deficient in BER and AlkB-directed DNA repair

Anna Sikora; Damian Mielecki; Aleksandra Chojnacka; Jadwiga Nieminuszczy; Michał Wrzesiński; Elżbieta Grzesiuk


DNA Repair | 2006

AlkB dioxygenase in preventing MMS-induced mutagenesis in Escherichia coli : Effect of Pol V and AlkA proteins

Jadwiga Nieminuszczy; Anna Sikora; Michał Wrzesiński; Celina Janion; Elżbieta Grzesiuk

Collaboration


Dive into the Jadwiga Nieminuszczy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damian Mielecki

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Anna Sikora

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Celina Janion

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Piwowarski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Anetta Nowosielska

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Anna Muszewska

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge