Jan Rahnenführer
University of Potsdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Rahnenführer.
PLOS ONE | 2011
Lyubov Chaykovska; Karoline von Websky; Jan Rahnenführer; Markus Alter; Susi Heiden; Holger Fuchs; Frank Runge; Thomas Klein; Berthold Hocher
Background Uremic cardiomyopathy contributes substantially to mortality in chronic kidney disease (CKD) patients. Glucagon-like peptide-1 (GLP-1) may improve cardiac function, but is mainly degraded by dipeptidyl peptidase-4 (DPP-4). Methodology/Principal Findings In a rat model of chronic renal failure, 5/6-nephrectomized [5/6N] rats were treated orally with DPP-4 inhibitors (linagliptin, sitagliptin, alogliptin) or placebo once daily for 4 days from 8 weeks after surgery, to identify the most appropriate treatment for cardiac dysfunction associated with CKD. Linagliptin showed no significant change in blood level AUC(0-∞) in 5/6N rats, but sitagliptin and alogliptin had significantly higher AUC(0-∞) values; 41% and 28% (p = 0.0001 and p = 0.0324), respectively. No correlation of markers of renal tubular and glomerular function with AUC was observed for linagliptin, which required no dose adjustment in uremic rats. Linagliptin 7 µmol/kg caused a 2-fold increase in GLP-1 (AUC 201.0 ng/l*h) in 5/6N rats compared with sham-treated rats (AUC 108.6 ng/l*h) (p = 0.01). The mRNA levels of heart tissue fibrosis markers were all significantly increased in 5/6N vs control rats and reduced/normalized by linagliptin. Conclusions/Significance DPP-4 inhibition increases plasma GLP-1 levels, particularly in uremia, and reduces expression of cardiac mRNA levels of matrix proteins and B-type natriuretic peptides (BNP). Linagliptin may offer a unique approach for treating uremic cardiomyopathy in CKD patients, with no need for dose-adjustment.
Kidney International | 2016
Oleg Tsuprykov; Ryotaro Ando; Christoph Reichetzeder; Karoline von Websky; Viktoriia Antonenko; Yuliya Sharkovska; Lyubov Chaykovska; Jan Rahnenführer; Ahmed Abdallah Hasan; Harald Tammen; Markus Alter; Thomas Klein; Seiji Ueda; Sho-ichi Yamagishi; Seiya Okuda; Berthold Hocher
Dipeptidyl peptidase (DPP)-4 inhibitors delay chronic kidney disease (CKD) progression in experimental diabetic nephropathy in a glucose-independent manner. Here we compared the effects of the DPP-4 inhibitor linagliptin versus telmisartan in preventing CKD progression in non-diabetic rats with 5/6 nephrectomy. Animals were allocated to 1 of 4 groups: sham operated plus placebo; 5/6 nephrectomy plus placebo; 5/6 nephrectomy plus linagliptin; and 5/6 nephrectomy plus telmisartan. Interstitial fibrosis was significantly decreased by 48% with linagliptin but a non-significant 24% with telmisartan versus placebo. The urine albumin-to-creatinine ratio was significantly decreased by 66% with linagliptin and 92% with telmisartan versus placebo. Blood pressure was significantly lowered by telmisartan, but it was not affected by linagliptin. As shown by mass spectrometry, the number of altered peptide signals for linagliptin in plasma was 552 and 320 in the kidney. For telmisartan, there were 108 peptide changes in plasma and 363 in the kidney versus placebo. Linagliptin up-regulated peptides derived from collagen type I, apolipoprotein C1, and heterogeneous nuclear ribonucleoproteins A2/B1, a potential downstream target of atrial natriuretic peptide, whereas telmisartan up-regulated angiotensin II. A second study was conducted to confirm these findings in 5/6 nephrectomy wild-type and genetically deficient DPP-4 rats treated with linagliptin or placebo. Linagliptin therapy in wild-type rats was as effective as DPP-4 genetic deficiency in terms of albuminuria reduction. Thus, linagliptin showed comparable efficacy to telmisartan in preventing CKD progression in non-diabetic rats with 5/6 nephrectomy. However, the underlying pathways seem to be different.
PLOS ONE | 2011
Berthold Hocher; Susi Heiden; Karoline von Websky; Ayman M. Arafat; Jan Rahnenführer; Markus Alter; Philipp Kalk; Dieter Ziegler; Yvan Fischer; Thiemo Pfab
Liver cirrhosis is often complicated by an impaired renal excretion of water and sodium. Diuretics tend to further deteriorate renal function. It is unknown whether chronic selective adenosine A1 receptor blockade, via inhibition of the hepatorenal reflex and the tubuloglomerular feedback, might exert diuretic and natriuretic effects without a reduction of the glomerular filtration rate. In healthy animals intravenous treatment with the novel A1 receptor antagonist SLV329 resulted in a strong dose-dependent diuretic (up to 3.4-fold) and natriuretic (up to 13.5-fold) effect without affecting creatinine clearance. Male Wistar rats with thioacetamide-induced liver cirrhosis received SLV329, vehicle or furosemide for 12 weeks. The creatinine clearance of cirrhotic animals decreased significantly (−36.5%, p<0.05), especially in those receiving furosemide (−41.9%, p<0.01). SLV329 was able to prevent this decline of creatinine clearance. Mortality was significantly lower in cirrhotic animals treated with SLV329 in comparison to animals treated with furosemide (17% vs. 54%, p<0.05). SLV329 did not relevantly influence the degree of liver fibrosis, kidney histology or expression of hepatic or renal adenosine receptors. In conclusion, chronic treatment with SLV329 prevented the decrease of creatinine clearance in a rat model of liver cirrhosis. Further studies will have to establish whether adenosine A1 receptor antagonists are clinically beneficial at different stages of liver cirrhosis.
Journal of the Renin-Angiotensin-Aldosterone System | 2011
Berthold Hocher; Ludwig Schlemm; Hannah Haumann; Jian Li; Jan Rahnenführer; Florian Guthmann; Christian Bamberg; Philipp Kalk; Thiemo Pfab; You-Peng Chen
Hypothesis/Introduction: We recently demonstrated that fetal sex may affect maternal glycaemic control in genetically prone mothers. We tested the hypothesis that fetal sex/fetal Y/X chromosomes might affect maternal glycaemic control during pregnancy depending on the maternal angiotensin converting enzyme (ACE) I/D polymorphism. Material and methods: One thousand, three hundred and thirty-two Caucasian women without pre-existing diabetes and pre-existing hypertension with singleton pregnancies delivering consecutively at the Charité obstetrics department were genotyped. Glycaemic control was analysed by measuring total glycated haemoglobin at birth. Correction for confounding factors and multiple testing was done. Results: Maternal ACE I/D polymorphism showed significant interaction with fetal sex concerning maternal total glycated haemoglobin. Total glycated haemoglobin in DD mothers delivering boys was 6.42 ± 0.70% vs. 6.21 ± 0.66% in DD mother delivering girls (p < 0.005), whereas the II carrying mothers showed the opposite effect. II mothers delivering a girl had a higher (p = 0.044) total glycated haemoglobin at birth (6.40 ± 0.80%) compared to II mothers delivering boys (6.21 ± 0.81%). There was no interaction of the ACE I/D polymorphism and fetal sex with respect to new onset proteinuria, new onset edema and pregnancy-induced hypertension. Conclusions: Maternal glycaemic control during the last weeks of pregnancy seems to be influenced by an interaction of the ACE I/D genotyp and fetal sex.
Kidney & Blood Pressure Research | 2015
Thomas Dschietzig; Katharina Krause-Relle; Maud Hennequin; Karoline von Websky; Jan Rahnenführer; Jana Ruppert; Hans Jürgen Grön; Franz Paul Armbruster; Ross A. D. Bathgate; Joerg R. Aschenbach; Wolf-Georg Forssmann; Berthold Hocher
Background/Aims: In diabetic nephropathy (DN), the current angiotensin-II-blocking pharmacotherapy is frequently failing. For diabetic cardiomyopathy (DC), there is no specific remedy available. Relaxin-2 (Rlx) - an anti-fibrotic, anti-inflammatory, and vasoprotecting peptide - is a candidate drug for both. Methods: Low-dose (32 µg/kg/day) and high-dose (320 µg/kg/day) Rlx were tested against vehicle (n = 20 each) and non-diabetic controls (n = 14) for 12 weeks in a model of type-1 diabetes induced in endothelial nitric oxide synthase knock-out (eNOS-KO) mice by intraperitoneal injection of streptozotocin. Results: Diabetic animals showed normal plasma creatinine, markedly increased albuminuria and urinary malonyldialdehyde, elevated relative kidney weight, glomerulosclerosis, and increased glomerular size, but no relevant interstitial fibrosis. Neither dose of Rlx affected these changes although the drug was active and targeted plasma levels were achieved. Of note, we found no activation of the renal TGF-β pathway in this model. In the hearts of diabetic animals, no fibrotic alterations indicative of DC could be determined which precluded testing of the initial hypothesis. Conclusions: We investigated a model showing early DN without overt tubulo-interstitial fibrosis and activation of the TGF-β-Smad-2/3 pathway. In this model, Rlx proved ineffective; however, the same may not apply to other models and types of diabetes.
Epigenetics | 2016
Berthold Hocher; Hannah Haumann; Jan Rahnenführer; Christoph Reichetzeder; Philipp Kalk; Thiemo Pfab; Oleg Tsuprykov; Stefan Winter; Ute Hofmann; Jian Li; Gerhard Püschel; Florian Lang; Detlef Schuppan; Matthias Schwab; Elke Schaeffeler
ABSTRACT Maternal environmental factors can impact on the phenotype of the offspring via the induction of epigenetic adaptive mechanisms. The advanced fetal programming hypothesis proposes that maternal genetic variants may influence the offsprings phenotype indirectly via epigenetic modification, despite the absence of a primary genetic defect. To test this hypothesis, heterozygous female eNOS knockout mice and wild type mice were bred with male wild type mice. We then assessed the impact of maternal eNOS deficiency on the liver phenotype of wild type offspring. Birth weight of male wild type offspring born to female heterozygous eNOS knockout mice was reduced compared to offspring of wild type mice. Moreover, the offspring displayed a sex specific liver phenotype, with an increased liver weight, due to steatosis. This was accompanied by sex specific differences in expression and DNA methylation of distinct genes. Liver global DNA methylation was significantly enhanced in both male and female offspring. Also, hepatic parameters of carbohydrate metabolism were reduced in male and female offspring. In addition, male mice displayed reductions in various amino acids in the liver. Maternal genetic alterations, such as partial deletion of the eNOS gene, can affect liver metabolism of wild type offspring without transmission of the intrinsic defect. This occurs in a sex specific way, with more detrimental effects in females. This finding demonstrates that a maternal genetic defect can epigenetically alter the phenotype of the offspring, without inheritance of the defect itself. Importantly, these acquired epigenetic phenotypic changes can persist into adulthood.
Life Sciences | 2013
Nicolas Vignon-Zellweger; Katharina Relle; Jan Rahnenführer; Karima Schwab; Berthold Hocher; Franz Theuring
AIMS The nitric oxide and endothelin systems are key components of a local paracrine hormone network in the heart. We previously reported that diastolic dysfunction observed in mice lacking the endothelial nitric oxide synthase (eNOS-/-) can be prevented by a genetic overexpression of ET-1. Sexual dimorphisms have been reported in both ET-1 and NO systems. Particularly, eNOS-/- mice present sex related phenotypic differences. MAIN METHODS We used the ET-1 transgenic (ET+/+), eNOS-/-, and crossbred ET+/+eNOS-/- mice, and wild type controls. We measured cardiac function by heart catheterization. Cardiac ventricles were collected for histological and molecular profiling. KEY FINDINGS We report here that (i) the level of ET-1 expression in eNOS-/- mice was elevated in males but not in females. (ii) Left ventricular end-diastolic blood pressure was higher in male eNOS-/- mice than in females. (ii) eNOS-/- males but not females developed cardiomyocyte hypertrophy. (iv) Perivascular fibrosis of intracardiac arteries developed in female ET+/+ and eNOS-/- mice but not in males. Additionally, (v) the cardiac expression of metalloprotease-9 was higher in eNOS-/- males compared to females. Finally, (vi) cardiac proteome analysis revealed that the protein abundance of the oxidative stress related enzyme superoxide dismutase presented with sexual dimorphism in eNOS-/- and ET+/+ mice. SIGNIFICANCE These results indicate that the cardiac phenotypes of ET-1 transgenic mice and eNOS knockout mice are sex specific. Since both systems are key players in the pathogenesis of cardiovascular diseases, our findings might be important in the context of gender differences in patients with such diseases.
European Journal of Medical Research | 2011
Berthold Hocher; Susi Heiden; K von Websky; Jan Rahnenführer; Philipp Kalk; Thiemo Pfab
Secondary activation of the endothelin system is thought to be involved in toxic liver injury. This study tested the hypothesis that dual endothelin-converting enzyme / neutral endopeptidase blockade might be able to attenuate acute toxic liver injury.Male Sprague-Dawley rats were implanted with subcutaneous minipumps to deliver the novel compound SLV338 (10 mg/kg*d) or vehicle. Four days later they received two intraperitoneal injections of D-galactosamine (1.3 g/kg each) or vehicle at an interval of 12 hours. The animals were sacrificed 48 hours after the first injection.Injection of D-galactosamine resulted in very severe liver injury, reflected by strongly elevated plasma liver enzymes, hepatic necrosis and inflammation, and a mortality rate of 42.9 %. SLV338 treatment did not show any significant effect on the extent of acute liver injury as judged from plasma parameters, hepatic histology and mortality. Plasma measurements of SLV338 confirmed adequate drug delivery. Plasma concentrations of big endothelin-1 and endothelin-1 were significantly elevated in animals with liver injury (5-fold and 62-fold, respectively). Plasma endothelin-1 was significantly correlated with several markers of liver injury. SLV338 completely prevented the rise of plasma big endothelin-1 (p < 0.05) and markedly attenuated the rise of endothelin-1 (p = 0.055).In conclusion, dual endothelin-converting enzyme / neutral endopeptidase blockade by SLV338 did not significantly attenuate D-galactosamine-induced acute liver injury, although it largely prevented the activation of the endothelin system. An evaluation of SLV338 in a less severe model of liver injury would be of interest, since very severe intoxication might not be relevantly amenable to pharmacological interventions.
Clinical Laboratory | 2013
Nicolas Vignon-Zellweger; Jan Rahnenführer; Franz Theuring; Berthold Hocher
Diabetologie Und Stoffwechsel | 2011
Markus Alter; Lyubov Chaykovska; K von Websky; Susi Heiden; Katharina Relle; Jan Rahnenführer; Holger Fuchs; Frank Runge; Thomas Klein; Berthold Hocher