Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan Tønnesen is active.

Publication


Featured researches published by Jan Tønnesen.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Optogenetic control of epileptiform activity

Jan Tønnesen; Andreas T. Sørensen; Karl Deisseroth; Cecilia Lundberg; Merab Kokaia

The optogenetic approach to gain control over neuronal excitability both in vitro and in vivo has emerged as a fascinating scientific tool to explore neuronal networks, but it also opens possibilities for developing novel treatment strategies for neurologic conditions. We have explored whether such an optogenetic approach using the light-driven halorhodopsin chloride pump from Natronomonas pharaonis (NpHR), modified for mammalian CNS expression to hyperpolarize central neurons, may inhibit excessive hyperexcitability and epileptiform activity. We show that a lentiviral vector containing the NpHR gene under the calcium/calmodulin-dependent protein kinase IIα promoter transduces principal cells of the hippocampus and cortex and hyperpolarizes these cells, preventing generation of action potentials and epileptiform activity during optical stimulation. This study proves a principle, that selective hyperpolarization of principal cortical neurons by NpHR is sufficient to curtail paroxysmal activity in transduced neurons and can inhibit stimulation train-induced bursting in hippocampal organotypic slice cultures, which represents a model tissue of pharmacoresistant epilepsy. This study demonstrates that the optogenetic approach may prove useful for controlling epileptiform activity and opens a future perspective to develop it into a strategy to treat epilepsy.


Nature Neuroscience | 2014

Spine neck plasticity regulates compartmentalization of synapses

Jan Tønnesen; Gergely Katona; Balázs Rózsa; U. Valentin Nägerl

Dendritic spines have been proposed to transform synaptic signals through chemical and electrical compartmentalization. However, the quantitative contribution of spine morphology to synapse compartmentalization and its dynamic regulation are still poorly understood. We used time-lapse super-resolution stimulated emission depletion (STED) imaging in combination with fluorescence recovery after photobleaching (FRAP) measurements, two-photon glutamate uncaging, electrophysiology and simulations to investigate the dynamic link between nanoscale anatomy and compartmentalization in live spines of CA1 neurons in mouse brain slices. We report a diversity of spine morphologies that argues against common categorization schemes and establish a close link between compartmentalization and spine morphology, wherein spine neck width is the most critical morphological parameter. We demonstrate that spine necks are plastic structures that become wider and shorter after long-term potentiation. These morphological changes are predicted to lead to a substantial drop in spine head excitatory postsynaptic potential (EPSP) while preserving overall biochemical compartmentalization.


Journal of Clinical Investigation | 2008

Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice.

Clare L. Parish; Gonçalo Castelo-Branco; Nina Rawal; Jan Tønnesen; Andreas T. Sørensen; Carmen Saltó; Merab Kokaia; Olle Lindvall; Ernest Arenas

Dopamine (DA) cell replacement therapy in Parkinson disease (PD) can be achieved using human fetal mesencephalic tissue; however, limited tissue availability has hindered further developments. Embryonic stem cells provide a promising alternative, but poor survival and risk of teratoma formation have prevented their clinical application. We present here a method for generating large numbers of DA neurons based on expanding and differentiating ventral midbrain (VM) neural stem cells/progenitors in the presence of key signals necessary for VM DA neuron development. Mouse VM neurospheres (VMNs) expanded with FGF2, differentiated with sonic hedgehog and FGF8, and transfected with Wnt5a (VMN-Wnt5a) generated 10-fold more DA neurons than did conventional FGF2-treated VMNs. VMN-Wnt5a cells exhibited the transcriptional and biochemical profiles and intrinsic electrophysiological properties of midbrain DA cells. Transplantation of these cells into parkinsonian mice resulted in significant cellular and functional recovery. Importantly, no tumors were detected and only a few transplanted grafts contained sporadic nestin-expressing progenitors. Our findings show that Wnt5a improves the differentiation and functional integration of stem cell-derived DA neurons in vivo and define Wnt5a-treated neural stem cells as an efficient and safe source of DA neurons for cell replacement therapy in PD.


PLOS ONE | 2011

Functional Integration of Grafted Neural Stem Cell-Derived Dopaminergic Neurons Monitored by Optogenetics in an In Vitro Parkinson Model

Jan Tønnesen; Clare L. Parish; Andreas T. Sørensen; Angelica Andersson; Cecilia Lundberg; Karl Deisseroth; Ernest Arenas; Olle Lindvall; Merab Kokaia

Intrastriatal grafts of stem cell-derived dopamine (DA) neurons induce behavioral recovery in animal models of Parkinsons disease (PD), but how they functionally integrate in host neural circuitries is poorly understood. Here, Wnt5a-overexpressing neural stem cells derived from embryonic ventral mesencephalon of tyrosine hydroxylase-GFP transgenic mice were expanded as neurospheres and transplanted into organotypic cultures of wild type mouse striatum. Differentiated GFP-labeled DA neurons in the grafts exhibited mature neuronal properties, including spontaneous firing of action potentials, presence of post-synaptic currents, and functional expression of DA D2 autoreceptors. These properties resembled those recorded from identical cells in acute slices of intrastriatal grafts in the 6-hydroxy-DA-induced mouse PD model and from DA neurons in intact substantia nigra. Optogenetic activation or inhibition of grafted cells and host neurons using channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), respectively, revealed complex, bi-directional synaptic interactions between grafted cells and host neurons and extensive synaptic connectivity within the graft. Our data demonstrate for the first time using optogenetics that ectopically grafted stem cell-derived DA neurons become functionally integrated in the DA-denervated striatum. Further optogenetic dissection of the synaptic wiring between grafted and host neurons will be crucial to clarify the cellular and synaptic mechanisms underlying behavioral recovery as well as adverse effects following stem cell-based DA cell replacement strategies in PD.


Biophysical Journal | 2011

Two-Color STED Microscopy of Living Synapses Using A Single Laser-Beam Pair

Jan Tønnesen; Fabien Nadrigny; Katrin I. Willig; Roland Wedlich-Söldner; U. Valentin Nägerl

The advent of superresolution microscopy has opened up new research opportunities into dynamic processes at the nanoscale inside living biological specimens. This is particularly true for synapses, which are very small, highly dynamic, and embedded in brain tissue. Stimulated emission depletion (STED) microscopy, a recently developed laser-scanning technique, has been shown to be well suited for imaging living synapses in brain slices using yellow fluorescent protein as a single label. However, it would be highly desirable to be able to image presynaptic boutons and postsynaptic spines, which together form synapses, using two different fluorophores. As STED microscopy uses separate laser beams for fluorescence excitation and quenching, incorporation of multicolor imaging for STED is more difficult than for conventional light microscopy. Although two-color schemes exist for STED microscopy, these approaches have several drawbacks due to their complexity, cost, and incompatibility with common labeling strategies and fluorophores. Therefore, we set out to develop a straightforward method for two-color STED microscopy that permits the use of popular green-yellow fluorescent labels such as green fluorescent protein, yellow fluorescent protein, Alexa Fluor 488, and calcein green. Our new (to our knowledge) method is based on a single-excitation/STED laser-beam pair to simultaneously excite and quench pairs of these fluorophores, whose signals can be separated by spectral detection and linear unmixing. We illustrate the potential of this approach by two-color superresolution time-lapse imaging of axonal boutons and dendritic spines in living organotypic brain slices.


Experimental Neurology | 2013

Superresolution imaging for neuroscience

Jan Tønnesen; U. Valentin Nägerl

The advent of superresolution fluorescence microscopy beyond the classic diffraction barrier of optical microscopy is poised to transform cell-biological research. A series of proof-of-principle studies have demonstrated its vast potential for a wide range of applications in neuroscience, including nanoscale imaging of neuronal morphology, cellular organelles, protein distributions and protein trafficking. This review introduces the main incarnations of these new methodologies, including STED, PALM/STORM and SIM, covering basic theoretical and practical aspects concerning their optical principles, technical implementation, scope and limitations. In addition, it highlights several discoveries relating to synapse biology that have been made using these novel approaches to illustrate their appeal for neuroscience research.


Frontiers in Psychiatry | 2016

Dendritic Spines as Tunable Regulators of Synaptic Signals

Jan Tønnesen; U. Valentin Nägerl

Neurons are perpetually receiving vast amounts of information in the form of synaptic input from surrounding cells. The majority of input occurs at thousands of dendritic spines, which mediate excitatory synaptic transmission in the brain, and is integrated by the dendritic and somatic compartments of the postsynaptic neuron. The functional role of dendritic spines in shaping biochemical and electrical signals transmitted via synapses has long been intensely studied. Yet, many basic questions remain unanswered, in particular regarding the impact of their nanoscale morphology on electrical signals. Here, we review our current understanding of the structure and function relationship of dendritic spines, focusing on the controversy of electrical compartmentalization and the potential role of spine structural changes in synaptic plasticity.


Methods | 2015

STED microscopy for nanoscale imaging in living brain slices.

Ronan Chéreau; Jan Tønnesen; U. Valentin Nägerl

Stimulated emission depletion (STED) microscopy was the first fluorescence microscopy technique to break the classic diffraction barrier of light microscopy. Even though STED was conceived more than 20 years ago and acknowledged with the 2014 Nobel Prize in Chemistry, it has not yet been widely adopted in biological research, which stands to benefit enormously from the potent combination of nanoscale spatial resolution and far-field optics. STED microscopy is an ensemble imaging technique that uses a pair of lasers for controlling the excitation state of fluorescent molecules in a targeted manner over nanoscale distances. STED is commonly a point-scanning technique, where the fluorescence spot from the first laser is sharpened by way of stimulated emission induced by the second laser. However, recent developments have extended the concept to multi-point scanning and to additional photophysical switching mechanisms. This review explains the basic principles behind STED microscopy and the differences with other super-resolution techniques. It provides practical information on how to construct and operate a STED microscope that can be used for nanoscale imaging of GFP and its variants in living brain slices. We conclude by highlighting a series of recent technological innovations that are bound to enhance its scope and performance in the near future.


Behavioural Brain Research | 2013

Optogenetic cell control in experimental models of neurological disorders.

Jan Tønnesen

The complexity of the brain, in which different neuronal cell types are interspersed and complexly interconnected, has posed a major obstacle in identifying pathophysiological mechanisms underlying prevalent neurological disorders. This is largely based in the inability of classical experimental approaches to target defined neural populations at sufficient temporal and spatial resolution. As a consequence, effective clinical therapies for prevalent neurological disorders are largely lacking. Recently developed optogenetic probes are genetically expressed photosensitive ion channels and pumps that in principal overcome these limitations. Optogenetic probes allow millisecond resolution functional control over selected optogenetically transduced neuronal populations targeted based on promoter activity. This optical cell control scheme has already been applied to answer fundamental questions pertaining to neurological disorders by allowing researchers to experimentally intercept, or induce, pathophysiological neuronal signaling activity in a highly controlled manner. Offering high temporal resolution control over neural activity at high cellular specificity, optogenetic tools constitute a game changer in research aiming at understanding pathophysiological signaling mechanisms in neurological disorders and in developing therapeutic strategies to correct these. In this regard, recent experimental work has provided new insights in underlying mechanisms, as well as preliminary proof-of-principle for optogenetic therapies, of several neurological disorders, including Parkinsons disease, epilepsy and progressive blindness. This review synthesizes experimental work where optogenetic tools have been applied to explore pathologic neural network activity in models of neurological disorders.


Experimental Neurology | 2010

Functional properties of the human ventral mesencephalic neural stem cell line hVM1.

Jan Tønnesen; Emma G. Seiz; Milagros Ramos; Olle Lindvall; Alberto Martínez-Serrano; Merab Kokaia

The human fetal ventral mesencephalon-derived stem cell line, hVM1, yields high number of tyrosine hydroxylase-expressing presumed dopaminergic neurons upon in vitro differentiation. Here we report that cells generated from this line differentiate into a neuronal phenotype, express electrophysiological properties of functional neurons and respond to neurotransmitters in vitro. However, the electrophysiological properties are immature and the cells require longer maturation time than possible under in vitro conditions.

Collaboration


Dive into the Jan Tønnesen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

U. Valentin Nägerl

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emma G. Seiz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Clare L. Parish

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge