Jan Van Deun
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Van Deun.
Journal of extracellular vesicles | 2014
Jan Van Deun; Pieter Mestdagh; Raija Sormunen; Veronique Cocquyt; Karim Vermaelen; Jo Vandesompele; Marc Bracke; Olivier De Wever; An Hendrix
Despite an enormous interest in the role of extracellular vesicles, including exosomes, in cancer and their use as biomarkers for diagnosis, prognosis, drug response and recurrence, there is no consensus on dependable isolation protocols. We provide a comparative evaluation of 4 exosome isolation protocols for their usability, yield and purity, and their impact on downstream omics approaches for biomarker discovery. OptiPrep density gradient centrifugation outperforms ultracentrifugation and ExoQuick and Total Exosome Isolation precipitation in terms of purity, as illustrated by the highest number of CD63-positive nanovesicles, the highest enrichment in exosomal marker proteins and a lack of contaminating proteins such as extracellular Argonaute-2 complexes. The purest exosome fractions reveal a unique mRNA profile enriched for translation, ribosome, mitochondrion and nuclear lumen function. Our results demonstrate that implementation of high purification techniques is a prerequisite to obtain reliable omics data and identify exosome-specific functions and biomarkers.
Nature Methods | 2017
Jan Van Deun; Pieter Mestdagh; Patrizia Agostinis; Özden Akay; Sushma Anand; Jasper Anckaert; Zoraida Andreu Martinez; Tine Baetens; Els Beghein; Laurence Bertier; Geert Berx; Janneke Boere; Stephanie Boukouris; Michel Bremer; Dominik Buschmann; James Brian Byrd; Clara Casert; Lesley Cheng; Anna Cmoch; Delphine Daveloose; Eva De Smedt; Seyma Demirsoy; Victoria Depoorter; Bert Dhondt; Tom A. P. Driedonks; Aleksandra M. Dudek; Abdou ElSharawy; Ilaria Floris; Andrew D. Foers; Kathrin Gärtner
We argue that the field of extracellular vesicle (EV) biology needs more transparent reporting to facilitate interpretation and replication of experiments. To achieve this, we describe EV-TRACK, a crowdsourcing knowledgebase (http://evtrack.org) that centralizes EV biology and methodology with the goal of stimulating authors, reviewers, editors and funders to put experimental guidelines into practice.
Scientific Reports | 2017
Glenn Vergauwen; Bert Dhondt; Jan Van Deun; Eva De Smedt; Geert Berx; Evy Timmerman; Kris Gevaert; Ilkka Miinalainen; Veronique Cocquyt; Geert Braems; Rudy Van den Broecke; Hannelore Denys; Olivier De Wever; An Hendrix
Identification and validation of extracellular vesicle (EV)-associated biomarkers requires robust isolation and characterization protocols. We assessed the impact of some commonly implemented pre-analytical, analytical and post-analytical variables in EV research. Centrifugal filters with different membrane types and pore sizes are used to reduce large volume biofluids prior to EV isolation or to concentrate EVs. We compared five commonly reported filters for their efficiency when using plasma, urine and EV-spiked PBS. Regenerated cellulose membranes with pore size of 10 kDa recovered EVs the most efficient. Less than 40% recovery was achieved with other filters. Next, we analyzed the effect of the type of protein assays to measure EV protein in colorimetric and fluorometric kits. The fluorometric assay Qubit measured low concentration EV and BSA samples the most accurately with the lowest variation among technical and biological replicates. Lastly, we quantified Optiprep remnants in EV samples from density gradient ultracentrifugation and demonstrate that size-exclusion chromatography efficiently removes Optiprep from EVs. In conclusion, choice of centrifugal filters and protein assays confound EV analysis and should be carefully considered to increase efficiency towards biomarker discovery. SEC-based removal of Optiprep remnants from EVs can be considered for downstream applications.
Biomacromolecules | 2016
Sabah Kasmi; Benoit Louage; Lutz Nuhn; Alexandra Van Driessche; Jan Van Deun; Izet Karalic; Martijn Risseeuw; Serge Van Calenbergh; Richard Hoogenboom; Riet De Rycke; Olivier De Wever; Wim E. Hennink; Bruno G. De Geest
The lack of selectivity and low solubility of many chemotherapeutics impels the development of different biocompatible nanosized drug carriers. Amphiphilic block copolymers, composed of a hydrophilic and hydrophobic domain, show great potential because of their small size, large solubilizing power and loading capacity. In this paper, we introduce a new class of degradable temperature-responsive block copolymers based on the modification of N-(2-hydroxypropyl)methacrylamide (HPMA) with an ethyl group via a hydrolytically sensitive carbonate ester, polymerized by radical polymerization using a PEG-based macroinitiatior. The micellization and temperature-responsive behavior of the PEG-poly(HPMA-EC) block copolymer were investigated by dynamic light scattering (DLS). We observed that the polymer exhibits lower critical solution temperature (LCST) behavior and that above the cloud point (cp) of 17 °C the block copolymer self-assembles in micelles with a diameter of 40 nm. Flow cytometry analysis and confocal microscopy show a dose-dependent cellular uptake of the micelles loaded with a hydrophobic dye. The block copolymer nanoparticles were capable of delivering the hydrophobic payload into cancer cells in both 2D and 3D in vitro cultures. The block copolymer has excellent cytocompatibility, whereas loading the particles with the hydrophobic anticancer drug paclitaxel results in a dose-dependent decrease in cell viability.
Cell Adhesion & Migration | 2017
Sarah Jeurissen; Glenn Vergauwen; Jan Van Deun; Lore Lapeire; Victoria Depoorter; Ilkka Miinalainen; Raija Sormunen; Rudy Van den Broecke; Geert Braems; Veronique Cocquyt; Hannelore Denys; An Hendrix
ABSTRACT Breast cancer cells closely interact with different cell types of the surrounding adipose tissue to favor invasive growth and metastasis. Extracellular vesicles (EVs) are nanometer-sized vesicles secreted by different cell types that shuttle proteins and nucleic acids to establish cell-cell communication. To study the role of EVs released by cancer-associated adipose tissue in breast cancer progression and metastasis a standardized EV isolation protocol that obtains pure EVs and maintains their functional characteristics is required. We implemented differential ultracentrifugation as a pre-enrichment step followed by OptiPrep density gradient centrifugation (dUC-ODG) to isolate EVs from the conditioned medium of cancer-associated adipose tissue. A combination of immune-electron microscopy, nanoparticle tracking analysis (NTA) and Western blot analysis identified EVs that are enriched in flotillin-1, CD9 and CD63, and sized between 20 and 200 nm with a density of 1.076–1.125 g/ml. The lack of protein aggregates and cell organelle proteins confirmed the purity of the EV preparations. Next, we evaluated whether dUC-ODG isolated EVs are functionally active. ZR75.1 breast cancer cells treated with cancer-associated adipose tissue-secreted EVs from breast cancer patients showed an increased phosphorylation of CREB. MCF-7 breast cancer cells treated with adipose tissue-derived EVs exhibited a stronger propensity to form cellular aggregates. In conclusion, dUC-ODG purifies EVs from conditioned medium of cancer-associated adipose tissue, and these EVs are morphologically intact and biologically active.
Journal of extracellular vesicles | 2017
Jan Van Deun; An Hendrix
ABSTRACT The EV-TRACK knowledgebase is developed to cope with the need for transparency and rigour to increase reproducibility and facilitate standardization of extracellular vesicle (EV) research. The knowledgebase includes a checklist for authors and editors intended to improve the transparency of methodological aspects of EV experiments, allows queries and meta-analysis of EV experiments and keeps track of the current state of the art. Widespread implementation by the EV research community is key to its success.
The International Journal of Biochemistry & Cell Biology | 2018
Bert Dhondt; Jan Van Deun; Silke Vermaerke; Ario de Marco; Nicolaas Lumen; Olivier De Wever; An Hendrix
Urine contains cellular elements, biochemicals, and proteins derived from glomerular filtration of plasma, renal tubule excretion, and urogenital tract secretions that reflect an individuals metabolic and pathophysiologic state. Despite intensive research into the discovery of urinary biomarkers to facilitate early diagnosis, accurate prognosis and prediction of therapy response in urological cancers, none of these markers has reached widespread use. Their implementation into daily clinical practice is hampered by a substantial degree of heterogeneity in performance characteristics and uncertainty about reliability, clinical utility and cost-effectiveness, in addition to several technical limitations. Extracellular vesicles (EV) have raised interest as a potential source of biomarker discovery because of their role in intercellular communication and the resemblance of their molecular content to that of the releasing cells. We review currently used urinary biomarkers in the clinic and attempts that have been made to identify EV-derived biomarkers for urological cancers. In addition, we discuss technical and methodological considerations towards their clinical implementation.
Journal of extracellular vesicles | 2017
Glenn Vergauwen; Bert Dhondt; Jan Van Deun; Evy Timmerman; Kris Gevaert; Geert Braems; Rudy Van den Broecke; Veronique Cocquyt; Hannelore Denys; Olivier De Wever; An Hendrix
Book: ISEV2017 To cite this article: (2017) Abstract Book: ISEV2017, Journal of Extracellular Vesicles, 6:sup1, 1310414, DOI: 10.1080/20013078.2017.1310414 To link to this article: https://doi.org/10.1080/20013078.2017.1310414
Journal of extracellular vesicles | 2016
Jan Van Deun; Pieter Mestdagh; Jasper Anckaert; Jo Vandesompele; Olivier De Wever; An Hendrix
Extracellular vesicles (EVs) have a demonstrated involvement in modulating the immune system. It has been proposed that EVs could be used as biomarkers for detection of inflammatory and immunological disorders. Consequently, it is of great interest to investigate EVs in more detail with focus on immunological markers. In this study, five major leukocyte subpopulations and the corresponding leukocyte-derived EVs were phenotyped with focus on selected immunological lineage-specific markers and selected vesicle-related markers. The leukocyte-derived EVs displayed phenotypic differences in the 34 markers investigated. The majority of the lineage-specific markers used for identification of the parent cell types could not be detected on EVs released from monocultures of the associated cell types. In contrast, the vesicular presentation of CD9, CD63, and CD81 correlated to the cell surface expression of these markers, however, with few exceptions. Furthermore, the cellular expression of CD9, CD63, and CD81 varied between leukocytes present inwhole blood and cultured leukocytes. In summary, these data demonstrate that the cellular and vesicular presentation of selected lineage-specific and vesicle-relatedmarkersmay differ, supporting the accumulating observations that sorting of molecular cargo into EVs is tightly controlled.ISEV2016 is organized by The Local Organizing Committee Chair Edit I Buzás (Hungary), Aled Clayton (United Kingdom), Dolores Di Vizio (USA), Juan Manuel Falcon-Perez (Spain), Guido Jenster (The Netherlands), Lorraine O’Driscoll (Ireland), Yong Song Gho (South Korea), Marjolein van Driel (The Netherlands), Hans van Leeuwen (The Netherlands), Guillaume van Niel (France), Marca HM Wauben (The Netherlands), Kenneth W Witwer (USA), María Yáñez-Mó (Spain) Together with the Executive ISEV Board (2014 – 2016) President: Jan Lötvall Secretary General: Clotilde Théry Interim Treasurer: Kenneth W Witwer Executive Chair Science / Meetings: Marca Wauben Executive Chair Education: Yong Song Gho Executive Chair Communication: Andrew Hill Members at Large: Peter Quesenberry, Kenneth W Witwer, Susmita Sahoo, Dolores Di Vizio, Chris Gardiner, Edit I Buzás, Hidetoshi Tahara, Suresh Mathivanan, Igor Kurochkin
Oncotarget | 2015
Ijeoma Adaku Umelo; Olivier De Wever; Peter Kronenberger; Jan Van Deun; Alfiah Noor; Kshitiz Singh; Erik Teugels; Gang Chen; Marc Bracke; Jacques De Grève