Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan-Willem van Dijk is active.

Publication


Featured researches published by Jan-Willem van Dijk.


Medicine and Science in Sports and Exercise | 2010

Low-Intensity Exercise Reduces the Prevalence of Hyperglycemia in Type 2 Diabetes

Ralph J. F. Manders; Jan-Willem van Dijk; Luc J. C. van Loon

INTRODUCTION Glycemic instability is a severely underestimated problem in type 2 diabetes treatment. Therapeutic targets should aim to reduce postprandial blood glucose excursions. Exercise prescription can effectively improve glucose homeostasis and reduce the risk of cardiovascular complications. AIM To assess the impact of a single, isoenergetic bout of low- (LI) and high-intensity (HI) exercise on the prevalence of hyperglycemia throughout the subsequent 24-h postexercise period in longstanding type 2 diabetes patients. METHODS Nine sedentary, male type 2 diabetes patients (age = 57 +/- 2 yr, body mass index = 29.0 +/- 1.0 kg x m(-2), Wmax = 2.2 +/- 0.2 W x kg(-1) body weight) were selected to participate in a randomized crossover study. Subjects performed an isoenergetic bout of endurance-type exercise for 60 min at 35% Wmax (LI) or 30 min at 70% Wmax (HI) or no exercise at all (NE). Thereafter, glycemic control was assessed during the subsequent 24-h postexercise period by continuous glucose monitoring under strict dietary standardization but otherwise free-living conditions. RESULTS Average 24-h glucose concentrations were reduced after the LI exercise bout (7.8 +/- 0.9 mmol x L(-1)) when compared with the control experiment (9.4 +/- 0.8 mmol x L(-1); P < 0.05). The HI exercise bout did not significantly lower mean glucose concentrations (8.7 +/- 0.7 mmol x L(-1); P = 0.14). Hyperglycemia was prevalent for as much as 35% +/- 9% throughout the day (NE). A single bout of exercise reduced the prevalence of hyperglycemia by 50% +/- 4% (P < 0.05) and 19% +/- 9% (P = 0.13) in the LI and HI exercise experiments, respectively. CONCLUSIONS A single bout of LI, as opposed to HI, exercise substantially reduces the prevalence of hyperglycemia throughout the subsequent 24-h postexercise period in longstanding type 2 diabetes patients.


Diabetes Care | 2013

Effect of Moderate-Intensity Exercise Versus Activities of Daily Living on 24-Hour Blood Glucose Homeostasis in Male Patients With Type 2 Diabetes

Jan-Willem van Dijk; Maarten Venema; Willem van Mechelen; Coen D. A. Stehouwer; F. Hartgens; Luc J. C. van Loon

OBJECTIVE To investigate the impact of activities of daily living (ADL) versus moderate-intensity endurance-type exercise on 24-h glycemic control in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Twenty males with type 2 diabetes participated in a randomized crossover study consisting of three experimental periods of 3 days each. Subjects were studied under sedentary control conditions, and under conditions in which prolonged sedentary time was reduced either by three 15-min bouts of ADL (postmeal strolling, ∼3 METs) or by a single 45-min bout of moderate-intensity endurance-type exercise (∼6 METs). Blood glucose concentrations were assessed by continuous glucose monitoring, and plasma insulin concentrations were determined in frequently sampled venous blood samples. RESULTS Hyperglycemia (glucose >10 mmol/L) was experienced for 6 h 51 min ±1 h 4 min per day during the sedentary control condition and was significantly reduced by exercise (4 h 47 min ± 1 h 2 min; P < 0.001), but not by ADL (6 h 2 min ± 1 h 16 min; P = 0.67). The cumulative glucose incremental areas under the curve (AUCs) of breakfast, lunch, and dinner were, respectively, 35 ± 5% (P < 0.001) and 17 ± 6% (P < 0.05) lower during the exercise and ADL conditions compared with the sedentary condition. The insulin incremental AUCs were, respectively, 33 ± 4% (P < 0.001) and 17 ± 5% (P < 0.05) lower during the exercise and ADL conditions compared with the sedentary condition. CONCLUSIONS When matched for total duration, moderate-intensity endurance-type exercise represents a more effective strategy to improve daily blood glucose homeostasis than repeated bouts of ADL. Nevertheless, the introduction of repeated bouts of ADL during prolonged sedentary behavior forms a valuable strategy to improve postprandial glucose handling in patients with type 2 diabetes.


The American Journal of Clinical Nutrition | 2013

Minced beef is more rapidly digested and absorbed than beef steak, resulting in greater postprandial protein retention in older men

Bart Pennings; Bart B. L. Groen; Jan-Willem van Dijk; Anneke de Lange; Alexandra Kiskini; Marjan Kuklinski; Joan M. G. Senden; Luc J. C. van Loon

BACKGROUND Older individuals generally experience a reduced food-chewing efficiency. As a consequence, food texture may represent an important factor that modulates dietary protein digestion and absorption kinetics and the subsequent postprandial protein balance. OBJECTIVE We assessed the effect of meat texture on the dietary protein digestion rate, amino acid availability, and subsequent postprandial protein balance in vivo in older men. DESIGN Ten older men (mean ± SEM age: 74 ± 2 y) were randomly assigned to a crossover experiment that involved 2 treatments in which they consumed 135 g of specifically produced intrinsically L-[1-(13)C]phenylalanine-labeled beef, which was provided as beef steak or minced beef. Meat consumption was combined with continuous intravenous L-[ring-(2)H5]phenylalanine and L-[ring-(2)H2]tyrosine infusion to assess beef protein digestion and absorption kinetics as well as whole-body protein balance and skeletal muscle protein synthesis rates. RESULTS Meat protein-derived phenylalanine appeared more rapidly in the circulation after minced beef than after beef steak consumption (P < 0.05). Also, its availability in the circulation during the 6-h postprandial period was greater after minced beef than after beef steak consumption (61 ± 3% compared with 49 ± 3%, respectively; P < 0.01). The whole-body protein balance was more positive after minced beef than after beef steak consumption (29 ± 2 compared with 19 ± 3 μmol phenylalanine/kg, respectively; P < 0.01). Skeletal muscle protein synthesis rates did not differ between treatments when assessed over a 6-h postprandial period. CONCLUSIONS Minced beef is more rapidly digested and absorbed than beef steak, which results in increased amino acid availability and greater postprandial protein retention. However, this does not result in greater postprandial muscle protein synthesis rates. This trial was registered at clinicaltrials.gov as NCT01145131.


Diabetes Care | 2012

Exercise therapy in type 2 diabetes: is daily exercise required to optimize glycemic control?

Jan-Willem van Dijk; Kyra Tummers; Coen D. A. Stehouwer; F. Hartgens; Luc J. C. van Loon

OBJECTIVE Given the transient nature of exercise-induced improvements in insulin sensitivity, it has been speculated that daily exercise is preferred to maximize the benefits of exercise for glycemic control. The current study investigates the impact of daily exercise versus exercise performed every other day on glycemic control in type 2 diabetic patients. RESEARCH DESIGN AND METHODS Thirty type 2 diabetic patients (age 60 ± 1 years, BMI 30.4 ± 0.7 kg/m2, and HbA1c 7.2 ± 0.2%) participated in a randomized crossover experiment. Subjects were studied on three occasions for 3 days under strict dietary standardization but otherwise free-living conditions. Blood glucose homeostasis was assessed by continuous glucose monitoring over 48 h during which subjects performed no exercise (control) or 60 min of cycling exercise (50% maximal workload capacity) distributed either as a single session performed every other day or as 30 min of exercise performed daily. RESULTS The prevalence of hyperglycemia (blood glucose >10 mmol/L) was reduced from 7:40 ± 1:00 h:min per day (32 ± 4% of the time) to 5:46 ± 0:58 and 5:51 ± 0:47 h:min per day, representing 24 ± 4 and 24 ± 3% of the time, when exercise was performed either daily or every other day, respectively (P < 0.001 for both treatments). No differences were observed between the impact of daily exercise and exercise performed every other day. CONCLUSIONS A short 30-min session of moderate-intensity endurance-type exercise substantially reduces the prevalence of hyperglycemia throughout the subsequent day in type 2 diabetic patients. When total work is being matched, daily exercise does not further improve daily glycemia compared with exercise performed every other day.


Journal of the American College of Cardiology | 2014

Circulating cardiac troponin T exhibits a diurnal rhythm.

Lieke J.J. Klinkenberg; Jan-Willem van Dijk; Frans E. S. Tan; Luc J. C. van Loon; Marja P. van Dieijen-Visser; Steven J.R. Meex

OBJECTIVES The goal of this study was to test the unverified assumption that chronically elevated cardiac troponin T (cTnT) levels fluctuate randomly around a homeostatic set point. BACKGROUND The introduction of high-sensitivity cardiac troponin (cTn) assays has improved sensitivity for acute myocardial infarction (AMI). However, many patients with a single positive cTn test result do not have AMI. Therefore, the diagnosis of AMI relies strongly on serial testing and interpretation of cTn kinetics. Essential in this regard is a profound understanding of the biological variation of cTn. METHODS Two studies were conducted to assess biological cTnT variation and to investigate the presence of a diurnal rhythm of cTnT. Study 1 comprised 23 male subjects with type 2 diabetes, with no acute cardiovascular disease. Serial venous blood samples were drawn over an 11-h period (8:30 am to 7:30 pm). In study 2, the presence of a diurnal cTnT rhythm was investigated by hourly sampling of 7 subjects from study 1 over 25 h. RESULTS In study 1, we observed a gradual decrease in cTnT concentrations during the day (24 ± 2%). This decrease was present in all participants and was most prominent in subjects with the highest baseline cTnT values (Pearsons R 0.93). Diurnal variation of cTnT, as assessed in study 2, was characterized by peak concentrations during morning hours (8:30 am, 17.1 ± 2.9 ng/l), gradually decreasing values during daytime (8:30 pm, 11.9 ± 1.6 ng/l), and rising concentrations during nighttime (8:30 am the next day, 16.9 ± 2.8 ng/l). CONCLUSIONS A diurnal cTnT rhythm substantiates the recommendation that all dynamic changes in cTnT should be interpreted in relation to the clinical presentation. Epidemiological studies and risk-stratification protocols with the use of cTnT may benefit from standardized sampling times. (Exercise and Glycemic Control in Type 2 Diabetes; NCT00945165).


Diabetes Research and Clinical Practice | 2011

Postprandial hyperglycemia is highly prevalent throughout the day in type 2 diabetes patients

Jan-Willem van Dijk; Ralph J. F. Manders; F. Hartgens; Coen D. A. Stehouwer; Stephan F. E. Praet; Luc J. C. van Loon

AIM Although postprandial hyperglycemia is recognized as an important target in type 2 diabetes treatment, information on the prevalence of postprandial hyperglycemia throughout the day is limited. Therefore, we assessed the prevalence of hyperglycemia throughout the day in type 2 diabetes patients and healthy controls under standardized dietary, but otherwise free-living conditions. METHODS 60 male type 2 diabetes patients (HbA(1c) 7.5±0.1% [58±1 mmol/mol]) and 24 age- and BMI-matched normal glucose tolerant controls were recruited to participate in a comparative study of daily glycemic control. During a 3-day experimental period, blood glucose concentrations throughout the day were assessed by continuous glucose monitoring. RESULTS Type 2 diabetes patients experienced hyperglycemia (glucose concentrations >10 mmol/L) 38±4% of the day. Even diabetes patients with an HbA(1c) level below 7.0% (53 mmol/mol) experienced hyperglycemia for as much as 24±5% throughout the day. Hyperglycemia was negligible in the control group (3±1%). CONCLUSION Hyperglycemia is highly prevalent throughout the day in type 2 diabetes patients, even in those patients with a HbA(1c) level well below 7.0% (53 mmol/mol). Standard medical care with prescription of oral blood glucose lowering medication does not provide ample protection against postprandial hyperglycemia.


American Journal of Physiology-endocrinology and Metabolism | 2016

Short-term muscle disuse lowers myofibrillar protein synthesis rates and induces anabolic resistance to protein ingestion

Benjamin T. Wall; Marlou L. Dirks; Tim Snijders; Jan-Willem van Dijk; Mario Fritsch; Lex B. Verdijk; Luc J. C. van Loon

Disuse leads to rapid loss of skeletal muscle mass and function. It has been hypothesized that short successive periods of muscle disuse throughout the lifespan play an important role in the development of sarcopenia. The physiological mechanisms underlying short-term muscle disuse atrophy remain to be elucidated. We assessed the impact of 5 days of muscle disuse on postabsorptive and postprandial myofibrillar protein synthesis rates in humans. Twelve healthy young (22 ± 1 yr) men underwent a 5-day period of one-legged knee immobilization (full leg cast). Quadriceps cross-sectional area (CSA) of both legs was assessed before and after immobilization. Continuous infusions of l-[ring-(2)H5]phenylalanine and l-[1-(13)C]leucine were combined with the ingestion of a 25-g bolus of intrinsically l-[1-(13)C]phenylalanine- and l-[1-(13)C]leucine-labeled dietary protein to assess myofibrillar muscle protein fractional synthetic rates in the immobilized and nonimmobilized control leg. Immobilization led to a 3.9 ± 0.6% decrease in quadriceps muscle CSA of the immobilized leg. Based on the l-[ring-(2)H5]phenylalanine tracer, immobilization reduced postabsorptive myofibrillar protein synthesis rates by 41 ± 13% (0.015 ± 0.002 vs. 0.032 ± 0.005%/h, P < 0.01) and postprandial myofibrillar protein synthesis rates by 53 ± 4% (0.020 ± 0.002 vs. 0.044 ± 0.003%/h, P < 0.01). Comparable results were found using the l-[1-(13)C]leucine tracer. Following protein ingestion, myofibrillar protein bound l-[1-(13)C]phenylalanine enrichments were 53 ± 18% lower in the immobilized compared with the control leg (0.007 ± 0.002 and 0.015 ± 0.002 mole% excess, respectively, P < 0.05). We conclude that 5 days of muscle disuse substantially lowers postabsorptive myofibrillar protein synthesis rates and induces anabolic resistance to protein ingestion.


Nutrition Research | 2015

A single dose of sodium nitrate does not improve oral glucose tolerance in patients with type 2 diabetes mellitus

Naomi M. Cermak; Dominique Hansen; Imre W. K. Kouw; Jan-Willem van Dijk; Jamie R. Blackwell; Andrew M. Jones; Martin J. Gibala; Luc J. C. van Loon

Dietary nitrate (NO3(-)) supplementation has been proposed as an emerging treatment strategy for type 2 diabetes. We hypothesized that ingestion of a single bolus of dietary NO3(-) ingestion improves oral glucose tolerance in patients with type 2 diabetes. Seventeen men with type 2 diabetes (glycated hemoglobin, 7.3% ± 0.2%) participated in a randomized crossover experiment. The subjects ingested a glucose beverage 2.5 hours after consumption of either sodium NO3(-) (0.15 mmol NaNO3(-) · kg(-1)) or a placebo solution. Venous blood samples were collected before ingestion of the glucose beverage and every 30 minutes thereafter during a 2-hour period to assess postprandial plasma glucose and insulin concentrations. The results show that plasma NO3(-) and nitrite levels were increased after NaNO3(-) as opposed to placebo ingestion (treatment-effect, P = .001). Despite the elevated plasma NO3(-) and nitrite levels, ingestion of NaNO3(-) did not attenuate the postprandial rise in plasma glucose and insulin concentrations (time × treatment interaction, P = .41 for glucose, P = .93 for insulin). Despite the lack of effect on oral glucose tolerance, basal plasma glucose concentrations measured 2.5 hours after NaNO3(-) ingestion were lower when compared with the placebo treatment (7.5 ± 0.4 vs 8.3 ± 0.4 mmol/L, respectively; P = .04). We conclude that ingestion of a single dose of dietary NO3(-) does not improve subsequent oral glucose tolerance in patients with type 2 diabetes.


International Journal of Sport Nutrition and Exercise Metabolism | 2017

Habitual Dietary Nitrate Intake in Highly Trained Athletes

Kristin L. Jonvik; Jean Nyakayiru; Jan-Willem van Dijk; Floris C. Wardenaar; Luc J. C. van Loon; Lex B. Verdijk

Although beetroot juice, as a nitrate carrier, is a popular ergogenic supplement among athletes, nitrate is consumed through the regular diet as well. We aimed to assess the habitual dietary nitrate intake and identify the main contributing food sources in a large group of highly trained athletes. Dutch highly trained athletes (226 women and 327 men) completed 2-4 web-based 24-hr dietary recalls and questionnaires within a 2- to 4-week period. The nitrate content of food products and food groups was determined systematically based on values found in regulatory reports and scientific literature. These were then used to calculate each athletes dietary nitrate intake from the web-based recalls. The median[IQR] habitual nitrate intake was 106[75-170] mg/d (range 19-525 mg/d). Nitrate intake correlated with energy intake (ρ = 0.28, p < .001), and strongly correlated with vegetable intake (ρ = 0.78, p < .001). In accordance, most of the dietary nitrate was consumed through vegetables, potatoes and fruit, accounting for 74% of total nitrate intake, with lettuce and spinach contributing most. When corrected for energy intake, nitrate intake was substantially higher in female vs male athletes (12.8[9.2-20.0] vs 9.4[6.2-13.8] mg/MJ; p < .001). This difference was attributed to the higher vegetable intake in female vs male athletes (150[88-236] vs 114[61-183] g/d; p < .001). In conclusion, median daily intake of dietary nitrate in highly trained athletes was 106 mg, with large interindividual variation. Dietary nitrate intake was strongly associated with the intake of vegetables. Increasing the intake of nitrate-rich vegetables in the diet might serve as an alternative strategy for nitrate supplementation.


Diabetes Spectrum | 2015

Exercise Strategies to Optimize Glycemic Control in Type 2 Diabetes: A Continuing Glucose Monitoring Perspective

Jan-Willem van Dijk; Luc J. C. van Loon

IN BRIEF The introduction of continuous glucose monitoring (CGM) several years ago enabled researchers to investigate the impact of exercise strategies on 24-hour glycemic control. Such unique information on the glucoregulatory properties of exercise will ultimately lead to more effective exercise programs to prevent and treat type 2 diabetes. This article reviews the role of exercise and physical activity in the treatment of type 2 diabetes, complemented by recent data obtained by CGM.

Collaboration


Dive into the Jan-Willem van Dijk's collaboration.

Top Co-Authors

Avatar

Luc J. C. van Loon

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Lex B. Verdijk

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Hartgens

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Jean Nyakayiru

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Joan M. G. Senden

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Kristin L. Jonvik

HAN University of Applied Sciences

View shared research outputs
Top Co-Authors

Avatar

Kyra Tummers

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandra Kiskini

Maastricht University Medical Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge