Jana Hajslova
Institute of Chemical Technology in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jana Hajslova.
Journal of Chromatography A | 2003
Jana Hajslova; Jitka Zrostlíková
If one has to determine multiple residues of modem pesticides and/or other groups of (semi)polar and/or thermally unstable contaminants with a wide range of physico-chemical properties within a single analytical run, it can be complicated to obtain low limits of quantitation (LOQ), good precision as well as relevant trueness of results for all the target analytes. Matrix components, which are unavoidably present in analyzed samples (even after the thorough clean-up step), may be responsible for miscellaneous adverse affects impairing different stages of the GC and/or LC determinative step. In this review, the nature of various types of matrix effects are discussed together with suggestions for prevention, reduction and/or compensation of their occurrence when determining troublesome analytes in foods and other complex biotic matrices.
Journal of Chromatography A | 1998
Jana Hajslova; Kateřina Holadová; Vladimir Kocourek; Jan Poustka; Michal Godula; Petr Cuhra; Milan Kempný
Abstract The influence of several experimental factors related to the enhanced gas chromatographic responses yielding apparent recoveries of pesticide residues greater than 100% was investigated. Optimisation of a gel permeation chromatographic clean-up step with respect to the trueness and precision of generated data was performed. An increase of relative detector response (100%=response of analyte in pure solvent solution) was evidenced to be dependent both on the concentration of the analyte and the character of the matrix: pronounced matrix-induced effects were observed particularly in orange and wheat extracts at low concentration levels of analytes (especially for GC–electron-capture detection analysis of certain pesticides). As soon as the splitless injector became contaminated after injection of large series of matrix-containing samples, a decrease of relative responses of pesticides, largely below 100%, was experienced. Although troublesome compounds tending to give matrix-induced effects can be identified, and increased recoveries may be tentatively predicted, poor accuracy of generated data can be presumed as long as quantitation is not based on a standard prepared in blank matrix extract to compensate for matrix-induced effects.
Analytica Chimica Acta | 2009
Lukas Vaclavik; Tomas Cajka; Vojtech Hrbek; Jana Hajslova
A novel approach for the authentication of olive oil samples representing different quality grades has been developed. A new type of ion source, direct analysis in real time (DART), coupled to a high-resolution time-of-flight mass spectrometer (TOFMS) was employed for the comprehensive profiling of triacylglycerols (TAGs) and/or polar compounds extracted with a methanol-water mixture. The main parameters influencing the ionization efficiency of TAGs were the type of sample solvent, degree of sample dilution, ion beam temperature, and presence of a dopant (ammonia vapors). The ionization yield of polar compounds depended mainly on a content of water in the extract and ion beam temperature. Using DART-TOFMS, not only differentiation among extra virgin olive oil (EVOO), olive pomace oil (OPO) and olive oil (OO) could be easily achieved, but also EVOO adulteration with commonly used adulterant, hazelnut oil (HO), was feasible. Based on the linear discriminant analysis (LDA), the introduced method allowed detection of HO addition of 6 and 15% (v/v) when assessing DART-TOFMS mass profiles of polar compounds and TAGs, respectively.
Analytica Chimica Acta | 2010
Milena Zachariasova; Ondrej Lacina; Alexandra Malachová; Marta Kostelanska; Jan Poustka; Michal Godula; Jana Hajslova
Rapid, simple and cost-effective analytical methods with performance characteristics matching regulatory requirements are needed for effective control of occurrence of Fusarium toxins in cereals and cereal-based products to which they might be transferred during processing. Within this study, two alternative approaches enabling retrospective data analysis and identification of unknown signals in sample extracts have been implemented and validated for determination of 11 major Fusarium toxins. In both cases, ultra-high performance liquid chromatography (U-HPLC) coupled with high resolution mass spectrometry (HR MS) was employed. (13)C isotopically labeled surrogates as well as matrix-matched standards were employed for quantification. As far as time of flight mass analyzer (TOF-MS) was a detection tool, the use of modified QuEChERS (quick easy cheap effective rugged and safe) sample preparation procedure, widely employed in multi-pesticides residue analysis, was shown as an optimal approach to obtain low detection limits. The second challenging alternative, enabling direct analysis of crude extract, was the use of mass analyzer based on Orbitrap technology. In addition to demonstration of full compliance of the new methods with Commission Regulation (EC) No. 401/2006, also their potential to be used for confirmatory purposes according to Commission Decision 2002/657/EC has been critically assessed.
Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2008
K. Lancová; Jana Hajslova; Jan Poustka; A. Krplova; Milena Zachariasova; Pavel Dostálek; L. Sachambula
The fate of five Fusarium toxins — deoxynivalenol (DON), sum of 15- and 3-acetyl-deoxynivalenol (ADONs), HT-2 toxin (HT-2) representing the main trichothecenes and zearalenone (ZON) during the malting and brewing processes — was investigated. In addition to these ‘free’ mycotoxins, the occurrence of deoxynivalenol-3-glucoside (DON-3-Glc) was monitored for the first time in a beer production chain (currently, only DON and ZON are regulated). Two batches of barley, naturally infected and artificially inoculated with Fusarium spp. during the time of flowering, were used as a raw material for processing experiments. A highly sensitive procedure employing high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was validated for the analysis of ‘free’ Fusarium mycotoxins and DON-conjugate in all types of matrices. The method was also able to detect nivalenol (NIV), fusarenon-X (FUS-X) and T-2 toxin (T-2); nevertheless, none of these toxins was found in any of the samples. While steeping of barley grains (the first step in the malting process) apparently reduced Fusarium mycotoxin levels to below their quantification limits (5–10 µg kg−1), their successive accumulation occurred during germination. In malt, the content of monitored mycotoxins was higher compared with the original barley. The most significant increase was found for DON-3-Glc. During the brewing process, significant further increases in levels occurred. Concentrations of this ‘masked’ DON in final beers exceeded ‘free’ DON, while in malt grists this trichothecene was the most abundant, with the DON/DON-3-Glc ratio being approximately 5:1 in both sample series. When calculating mass balance, no significant changes were observed during brewing for ADONs. The content of DON and ZON slightly decreased by a maximum of 30%. Only traces of HT-2 were detected in some processing intermediates (wort after trub removal and green beer).
Talanta | 2010
Lukas Vaclavik; Milena Zachariasova; Vojtech Hrbek; Jana Hajslova
Direct analysis in real time (DART) ionization coupled to an (ultra)high resolution mass spectrometer based on orbitrap technology (orbitrapMS) was used for rapid quantitative analysis of multiple mycotoxins isolated from wheat and maize by modified QuEChERS procedure. After initial evaluation of ionization efficiencies for major groups of mycotoxins achievable with DART technology, sample preparation procedure and instrument parameter settings were optimized to obtain sensitive and accurate determination of most intensively ionizing toxins (deoxynivalenol, nivalenol, zearalenon, actyldeoxynivalenol, deepoxy-deoxynivalenol, fusarenon-X, altenuene, alternariol, alternariolmethylether, diacetoxyscirpenol, sterigmatocystin). The lowest calibration levels (LCLs) estimated for the respective analytes ranged from 50 to 150 μg kg(-1). Quantitative analysis was performed either with the use of matrix-matched standards or by employing commercially available (13)C-labeled internal standards (available for deoxynivalenol, nivalenol and zearalenon). Good recoveries (100-108%) and repeatabilities (RSD 5.4-6.9%) were obtained at spiking level 500 μg kg(-1) with isotope dilution technique. Based on matrix-matched calibration, recoveries and repeatabilities were in the range 84-118% and 7.9-12.0% (RSD), respectively. The trueness of data obtained for deoxynivalenol and zearalenon in wheat/maize by DART-orbitrapMS was demonstrated by analysis of certified reference materials (CRMs). Good agreement of these results with data generated by validated ultra-high pressure liquid chromatography-time-of-flight mass spectrometry method was documented.
Journal of Chromatography A | 2002
Jitka Zrostlíková; Jana Hajslova; Jan Poustka; Pavel Begany
The aim of this study was to evaluate the applicability of different calibration approaches in a multi- and single-residue analysis of modern pesticides in plant matrices using liquid chromatography-electrospray mass spectrometry (HPLC-ESI-MS). In the first set of experiments the determination of eight pesticides representing different groups of polar/unstable pesticides (carbamates, benzimidazoles, azoles, benzoylphenylurea) in apple samples was performed. The trueness and precision of data obtained by using: (i) external solvent standard calibration, (ii) external matrix-matched standard calibration and (iii) echo-peak internal standard calibration was compared. The last mentioned method is a novel technique providing the possibility to inject internal standard of the same identity as a target analyte, so that its retention time is close to the analyte from the sample. According to expectation, when using external standard solvent calibration the results were under- or overestimated due to suppression or enhancement of analytes signal by matrix components. On the other hand with the use of matrix-matched calibration accurate data were obtained. With echo-peak technique accurate results comparable to those obtained by matrix calibration were obtained for six out of eight pesticides. In the second set of experiment we used the echo-peak technique to overcome the problem with the response instability in the analysis of chlormequat in pear concentrate samples. As an internal standard method the echo-peak technique provided the possibility of monitoring of signal decrease during the analytical sequence and to compensate this decrease by relating sample peak area relatively to this internal standard.
Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2005
Jana Hajslova; Věra Schulzová; Premysl Slanina; K Janné; K.-E. Hellenäs; Ch Andersson
The quality of potatoes from organic and conventional farming was investigated in this study. Tubers of eight potato varieties, organically and conventionally produced at one or two geographical sites in controlled field trials, were collected in four consecutive harvests from 1996–1999. The parameters analysed included nitrate, trace elements (As, Cd, Co, Cu, Fe, Hg, Mn, Ni, Pb, Se, Zn), vitamin C, potato glycoalkaloids, as well as chlorogenic acid, polyphenol oxidase and rate of tuber enzymic browning. The results indicated lower nitrate content and higher vitamin C and chlorogenic acid content to be the parameters most consistently differentiating organically from conventionally produced potatoes. Elevated concentrations of glycoalkaloids were also observed throughout the experiments in some potato varieties grown in organic farming systems. Principal component analysis (PCA) of the analytical and other data using three PCs confirmed a good separation between the organically and conventionally produced potatoes when studied in single crop years. However, score-plots (objects) and loading-plots (variables) of pooled results from the consecutive harvests showed that between the years’ changes and also variety as well as geographical variations are equally or more important factors determining the quality of potatoes than the farming system. Further studies of various marker compounds of potato quality related to the organic or conventional farming systems should be performed before unbiased information can be given to the consumers.
Journal of Chromatography A | 2003
Jitka Zrostlíková; Jana Hajslova; Tomas Cajka
In recent years, comprehensive two-dimensional gas chromatography (GC x GC) has attained increasing attention for its outstanding separation potential and capability to solve demanding analytical tasks. Trace level analysis of pesticides residues in complex food matrices represents such a demanding task. For some commodities, such as baby food, the requirements on method detection limits are very strict and the unambiguous confirmation of the pesticide presence based on mass spectrometric detection is required. In this work, GC x GC coupled to time-of-flight mass spectrometry (TOF MS) has been evaluated for the determination of pesticides residues in fruit samples. Twenty modern pesticides with a broad range of physico-chemical properties were analysed in apple and peach samples. It has been demonstrated that the application of comprehensive two-dimensional gas chromatography brings distinct advantages such as enhanced separation of target pesticides from matrix co-extracts as well as their improved detectability. The limits of detection of the pesticides comprised in the study (determined at S/N = 5) ranged from 0.2 to 30 pg, injected with the exception of the last eluted deltamethrin, for which 100 pg could be detected. When compared to one-dimentional GC-TOF MS analysis under essentially the same conditions the detectability enhancement was 1.5-50-fold. Full mass spectral information by time-of-flight mass spectrometry and the deconvolution capability of the dedicated software allowed for reliable identification of most pesticides at levels below 0.01 mg/kg (< 10 pg injected) in fruit. Performance characteristics of the GC x GC-TOF MS method, such as linearity of calibration curves, repeatability of (summed) peak areas, as well as repeatability of first and second dimension retention times, were shown to fully satisfy the requirements for trace level analysis of the pesticide residues in food.
Analytical Chemistry | 2008
Jakub Schurek; Lukas Vaclavik; H. (Dick) Hooijerink; Ondrej Lacina; Jan Poustka; Matthew Sharman; Marianne Caldow; Michel W. F. Nielen; Jana Hajslova
Ambient mass spectrometry has been used for the analysis of strobilurin residues in wheat. The use of this novel, challenging technique, employing a direct analysis in a real time (DART) ion-source coupled with a time-of-flight mass spectrometer (TOF MS) and a desorption electrospray ionization (DESI) source coupled with a linear ion trap tandem MS (LIT MS(n)), permitted a direct screen of the occurrence of target fungicides in treated grains in less than 1 min. For quantification purpose by DART-TOF MS, an ethyl acetate extract had to be prepared. With the use of a prochloraz as an internal standard, the performance characteristics obtained by repeated analyses of extract, spiked at 50 microg kg(-1) with six strobilurins (azoxystrobin, picoxystrobin, dimoxystrobin, kresoxim-methyl, pyraclostrobin, and trifloxystrobin), were in the following range: recoveries 78-92%, repeatability (RSD) 8-15%, linearity (R(2)) 0.9900-0.9978. The analysis of wheat with incurred strobilurin residues demonstrated good trueness of data generated by the DART-TOF MS method; the results were in a good agreement with those obtained by the conventional approach, i.e., by the QuEChERS sample handling procedure followed by identification/quantification employing high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Tandem mass spectrometry using DESI-LIT MS(n) provided a sufficient number of product ions for confirmation of the identity of azoxystrobin and pyraclostrobin in incurred wheat samples.