Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jana Kraft is active.

Publication


Featured researches published by Jana Kraft.


Lipids | 2003

Differences in CLA isomer distribution of cow's milk lipids

Jana Kraft; Marius Collomb; Peter Möckel; Robert Sieber; Gerhard Jahreis

The uniqueness of ruminant milk lipids is based on their high concentration of CLA. Maximal CLA concentrations in milk lipids require optimal conditions of ruminal fermentation and substrate availability, conditions like those present in pasture-fed cows. Our previous work showed that farm management (indoor feeding vs. pasture feeding) markedly influenced the CLA concentration. In this study, the objective was to evaluate the influence of the farm management system as dependent on different locations. Milk samples from different locations (Thuringia and the Alps, representing diverse altitudes) were collected during the summer months and analyzed for FA profile and CLA isomer distribution. The proportion of PUFA and total CLA in milk fat was significantly lower in milk from indoor cows compared with the pasture cows in the Alps. The trans-11 18∶1 in milk fat of Alpine cows was elevated, in contrast to lower values for trans-10 18∶1. Milk from cows grazing pasture in the Alps was higher in EPA and lower in arachidonic acid than milk from indoor-fed cows. The proportion of cis,trans/trans,cis isomers of CLA was 10 times higher from the indoor cows than from the Alpine cows. In addition to the major isomer cis-9,trans-11, this difference also occurred for the trans-11,cis-13 isomer, which represented more than a fourth of the total CLA present in milk fat. This is the first report showing a special isomer distribution in the milk fat of cows living under very natural conditions. We hypothesize that the CLA isomer trans-11,cis-13 is formed in large quantity as a result of grazing mountain pasture, which is rich in α-linolenic acid.


British Journal of Nutrition | 2006

Trans -11–18: 1 is effectively δ9-desaturated compared with Trans -12–18: 1 in humans

Katrin Kuhnt; Jana Kraft; Peter Moeckel; Gerhard Jahreis

The aim of this human intervention study was to evaluate the Delta9-desaturation of trans-11-18 : 1 (trans-vaccenic acid; tVA) to cis-9,trans-11-18 : 2 (c9,t11 conjugated linoleic acid; CLA) and of trans-12-18 : 1 (t12) to cis-9,trans-12-18 : 2 after a short-term (7 d) and a long-term (42 d) supplementation period. The conversion rates of both trans-18 : 1 isomers were estimated by lipid analysis of serum and red blood cell membranes (RBCM). Subjects started with a 2-week adaptation period without supplements. During the 42 d intervention period, the diet of the test group was supplemented with 3 g/d of tVA and 3 g/d of t12. The diet of the control group was supplemented with a control oil. Serum tVA and t12 levels in the test group increased by fivefold and ninefold after 7 d, respectively, and by eight- and 12-fold after 42 d, respectively, when compared with the adaptation period (P< or =0.002). The serum c9,t11 CLA levels increased by 1.7- and 2.0-fold after 7 d and 42 d, respectively (P< or =0.001). After 42 d, the test groups RBCM c9,t11 CLA content was elevated by 20 % (P=0.021), whereas in the control group it was decreased by 50 % (P=0.002). The conversion rate of tVA was estimated at 24 % by serum and 19 % by RBCM. No increase in c9,t12-18 : 2 was observed in the serum and RBCM, and thus no conversion of t12 could be determined. In conclusion, the endogenous conversion of dietary tVA to c9,t11 CLA contributes approximately one quarter to the human CLA pool and should be considered when determining the CLA supply.


European Journal of Lipid Science and Technology | 2000

Conjugated linoleic acids : Physiological effects in animal and man with special regard to body composition

Gerhard Jahreis; Jana Kraft; Frank Tischendorf; Friedrich Schöne; Christian von Loeffelholz

Institute of Nutrition, Friedrich Schiller University of Jena, Jena, Germany In the last decade, conjugated linoleic acids (CLA) have been shown to have some beneficial (but also unfavourable) effects: anticarcinogenic properties, immune modulation, reduction of body fat and increase of lean body mass, normalisation of impaired glucose tolerance, promotion of fatty streak formation, and isomer-specific effects. The research base on CLA has been derived almost exclusively from animal models, while some of the biological properties have been fairly well-documented, others are still open to question. For about 5 years a lot of commercial CLA mixtures have been offered. These mixtures produced from linoleic acid-rich oil like sunflower or safflower oil by alkali isomerization contained, besides cis-9,trans-11 and trans-10,cis-12 CLA isomers (about 20—40% of each), parts of cis,cis and trans,trans isomers as well. The quality of the recent products is significantly improved and they contain only two CLA isomers: cis-9,trans-11 and trans-10,cis-12. CLA play apparently a key role in regulating body composition. Several studies showed a reduction in body fat mass and a slight increase in lean body mass depending on the species. A possible explanation for the decrease of body fat may be a stimulation of lipolysis and a reduction of lipoprotein lipase activity in adipocytes. In adipose and muscle tissue a CLA-stimulated increase of carnitine palmitoyltransferase activity resulting in an enhanced fatty acid oxidation was shown. There is evidence that CLA provide protection against cytokine-induced (Tumour necrosis factor-α, interleukin-1) skeletal-muscle catabolism (anabolic effect). The body composition modulating effects are most impressive in rodents and seem to become smaller in pigs and in humans. Data on humans are insufficient. Further research is essential to characterize the multifunctionality of CLA in humans, in order to identify the specific physiological mechanism of the biologically active isomers and to determine the optimal level of these isomers for beneficial effects.


Journal of Agricultural and Food Chemistry | 2008

Extensive Analysis of Long-Chain Polyunsaturated Fatty Acids, CLA, trans-18:1 Isomers, and Plasmalogenic Lipids in Different Retail Beef types

Jana Kraft; John K. G. Kramer; Friedrich Schoene; Jim R. Chambers; Gerhard Jahreis

The objective of this investigation was to provide a comprehensive analysis of the total lipid composition of present-day retail beef meat available at the consumer level and to evaluate the total lipid composition with special emphasis on the nutritional value. For this purpose, 40 beef cuts were obtained from four cattle farms based on either a natural grazing system (NGS) or an intensive production system (IPS). The total lipid composition was analyzed using complementary chemical and chromatographic procedures. The content of n-3 LC-PUFA, CLA, total trans-18:1, and branched-chain fatty acids was significantly higher in NGS beef than in IPS beef. The trans-18:1 and CLA profiles were affected by the different production systems, whereby they can be utilized empirically to differentiate between feeding regimen and production management. Fatty acid ratios that have health implications ( n-6/ n-3, LA/alphaLNA, and AA/EPA) were remarkably beneficial for NGS beef compared with IPS beef. In conclusion, from the human health perspective, beef raised on NGS is clearly superior with regard to a more favorable fatty acid profile in comparison to IPS beef.


British Journal of Nutrition | 2007

Dietary supplementation with trans-11- and trans-12-18 : 1 increases cis-9, trans-11-conjugated linoleic acid in human immune cells, but without effects on biomarkers of immune function and inflammation.

Katrin Kuhnt; Jana Kraft; Heinz Vogelsang; Klaus Eder; Jürgen Kratzsch; Gerhard Jahreis

Trans-fatty acid intake is associated with an increased risk of CHD and diabetes. The effects of single trans-fatty acid isomers are largely unexplored. The present study examined the effects of a 6-week supplementation with two trans-18 : 1 isomers (trans-11 and trans-12) in human subjects on immune cells, several inflammatory and immunological biomarkers (for example, IL, TNFalpha, C-reactive protein, adiponectin, intercellular adhesion molecule-1, prostacyclin, phagocytic process). Following a 2-week adaptation period without supplements, the test group (n 12) received vaccenic acid (trans-11-18:1) and trans-12-18 : 1 in equal amounts (6.0 g/d) for 6 weeks. The control group (n 12) consumed an oil without trans-fatty acids and conjugated linoleic acids (CLA). Samples were collected at the end of both periods. Trans-11- and trans-12-18 : 1 were significantly increased in cellular lipids. The endogenous synthesis of cis-9, trans-11-CLA from trans-11-18 : 1 was demonstrated via increased CLA in cellular lipids of the test group. Generally, trans-isomer supplementation did not affect either inflammatory biomarkers (for example, IL-6, IL-8, TNFalpha) or immune function (for example, phagocytosis) during the present study. The dietary supplementation of trans-11- and trans-12-18 : 1 (6 g/d) and their accumulation in leucocytes had no effects on biomarkers of inflammation and immune function. However, because of the limited data on the safety of trans-fatty acid intake and effects of individual trans isomers on human health (for example, trans-9-18 : 1, trans-10-18 : 1) at present, it is prudent to reduce trans-fat intake in general.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Diet-induced metabolic change induces estrogen-independent allometric mammary growth

Grace E. Berryhill; Julia M. Gloviczki; Josephine F. Trott; Lucila Aimo; Jana Kraft; Robert D. Cardiff; Carly T. Paul; Whitney K. Petrie; A.L. Lock; Russell C. Hovey

Lifetime breast cancer risk reflects an unresolved combination of early life factors including diet, body mass index, metabolic syndrome, obesity, and age at first menses. In parallel, the onset of allometric growth by the mammary glands around puberty is widely held to be estrogen (E)-dependent. Here we report that several physiological changes associated with metabolic syndrome in response to a diet supplemented with the trans-10, cis-12 isomer of conjugated linoleic acid lead to ovary-independent allometric growth of the mammary ducts. The E-independence of this diet-induced growth was highlighted by the fact that it occurred both in male mice and with pharmacological inhibition of either E receptor function or E biosynthesis. Reversal of the metabolic phenotype with the peroxisome proliferator-activated receptor-γ agonist rosiglitazone abrogated diet-induced mammary growth. A role for hyperinsulinemia and increased insulin-like growth factor-I receptor (IGF-IR) expression during mammary growth induced by the trans-10, cis-12 isomer of conjugated linoleic acid was confirmed by its reversal upon pharmacological inhibition of IGF-IR function. Diet-stimulated ductal growth also increased mammary tumorigenesis in ovariectomized polyomavirus middle T-antigen mice. Our data demonstrate that diet-induced metabolic dysregulation, independently of ovarian function, stimulates allometric growth within the mammary glands via an IGF-IR-dependent mechanism.


Journal of The American College of Nutrition | 2008

Introduction to the proceedings of the symposium "Scientific Update on Dairy Fats and Cardiovascular Diseases".

A.L. Lock; Frédéric Destaillats; Jana Kraft; J. Bruce German

The symposium “Scientific Update on Dairy Fats and Cardiovascular Diseases” was held on 25 June 2008 in Reading (UK). The event was hosted by the University of Reading (UK) and organized and facilitated by the International Dairy Federation’s Standing Committee on Nutrition and Health. The objectives of this symposium were to provide a reappraisal of the impact of dairy foods and milk fat on cardiovascular diseases (CVD) and to place dairy fat into the context of overall human health. An adequate supply of good quality food is essential for human health and well-being. It is unsurprising then that ruminant milk and dairy products have been recognised as important human food sources from as early as 4000 B.C. as evidenced by the depiction of dairying in rock drawings from the Sahara and from cheese remains being found in Egyptian tombs dating back to 2300 B.C. [1]. The dairy sector has made continuous advancement over the years and today there is a wide variety of milks and dairy products readily available to the consumer. In response to considerable scientific research on the nutritional value of milk, dietary guidelines around the world have recommended daily consumption of dairy products for the overall health of the population [2]. The important contributions of these products in meeting human dietary requirements for energy, high quality protein and several key minerals and vitamins are well documented [3,4], although the nutritional importance of dairy fats is often less well understood. With the projected growth in world population and the increased demand for animal-derived food products as living standards improve, dairy products will undoubtedly continue to be an important dietary source of nutrients. Food provides essential nutrients, but there is also growing consumer recognition of the link between diet and health; this awareness impacts food choices. For over half a century, the concept of eating healthy has become synonymous with avoiding dietary fat and cholesterol, especially saturated fat, and on a population basis, a diet low in saturated fat remains at the heart of nutritional advice in many countries for lowering plasma cholesterol and reducing CVD risk. In the case of dairy products, there has been a general perception that a food containing saturated fat is unlikely to be beneficial to health. Yet, over the last decade, evidence has been accumulated that the composition and quantities of dietary fat is very important in determining the relative risk to diseases such as CVD and cancer, and that milk-derived fat may offer significant health benefits compared to some common sources of dietary fats [5–7]. On average bovine milk contains about 33 g total lipid (fat) per litre. Triacylglycerols, which account for about 97% of the lipid fraction, are composed of fatty acids of different carbon chain length (4 to 24 atoms), degree of saturation and positional specificity on the glycerol backbone. Other milk lipids are diacylglycerol (about 2% of the lipid fraction), cholesterol (less than 0.5%), phospholipids (about 1%) and free fatty acids (less than 0.5% of total milk lipids). Milk fat is present as complex globules with structural properties distinct from other biological sources of fats. It is one of the most complex naturallyoccurring fats with more then 400 different fatty acids reported, however, only about 20 of these make up approximately 95% of the total [8]. It is important to recognize that a large diversity of dairy foods of widely differing composition is manufactured from this unique raw material. Research continues to unravel the complexities associated


Journal of Agricultural and Food Chemistry | 2015

Lipid-Encapsulated Echium Oil (Echium plantagineum) Increases the Content of Stearidonic Acid in Plasma Lipid Fractions and Milk Fat of Dairy Cows

Melissa L. Bainbridge; A.L. Lock; Jana Kraft

The objective of this study was to evaluate the impact of feeding lipid-encapsulated echium oil (EEO) on animal performance and milk fatty acid profile. Twelve Holstein dairy cows were used in a 3 × 3 Latin Square design with 14 day periods. Treatments were a control diet (no supplemental fat), 1.5% dry matter (DM) as EEO and 3.0% DM as EEO. Treatments had no negative effect on animal performance (dry matter intake, milk yield, and fat yield). The milk fat content of total n-3 fatty acids and stearidonic acid (SDA) increased with EEO supplementation (P < 0.001). The proportion of SDA increased in all plasma lipid fractions with EEO supplementation (P < 0.001). Transfer of SDA from EEO into milk fat was 3.4 and 3.2% for the 1.5 and 3% EEO treatments, respectively. In conclusion, EEO increases the content of n-3 fatty acids in milk fat; however, the apparent transfer efficiency was low.


Journal of Nutrition | 2011

Differential Effects of the trans-18:1 Isomer Profile of Partially Hydrogenated Vegetable Oils on Cholesterol and Lipoprotein Metabolism in Male F1B Hamsters

Jana Kraft; Jessica I. Spiltoir; Andrew M. Salter; A.L. Lock

Trans-fatty acid consumption from partially hydrogenated vegetable oil (PHVO) has been positively associated with multiple cardiovascular disease risk factors and events. This study was designed to examine the effects of trans-fatty acid isomer profile of PHVO on plasma lipids and lipoproteins and hepatic expression of key genes involved in cholesterol and fatty acid metabolism. Thirty-three male F(1)B strain Syrian Golden Hamsters were allocated to 1 of 3 hypercholesterolemic diets containing (5% by weight): 1) tristearin [control fat (CON)]; 2) partially hydrogenated high-oleic acid sunflower oil (PH-SUN); or 3) partially hydrogenated high-linoleic acid safflower oil (PH-SAF). PH-SUN contained more trans-4 to trans-10 18:1 compared with PH-SAF, which contained more trans-11 to trans-16 18:1. The addition of both PHVO to the diet increased plasma total cholesterol concentrations relative to CON, but only PH-SUN increased the plasma ratio of non-HDL:HDL cholesterol compared with CON. PH-SUN increased VLDL (total, large, and medium) and IDL particle concentrations while decreasing total, medium, and small HDL particle concentrations relative to CON. Both PHVO diets increased the hepatic cholesterol ester concentration, whereas the hepatic TG concentration was lower in PH-SUN compared with PH-SAF and CON. Levels of hepatic LDL receptor, HMG-CoA reductase, and sterol response element binding protein 1 mRNA were specifically reduced in the PH-SUN group compared to the CON group. Expression of SREBP1c was upregulated in both PHVO groups compared to CON, whereas only the PH-SAF group had higher levels of the lipogenic enzymes acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase-1 compared to CON. These results indicate that differences in the trans-fatty acid profile of PHVO can differentially affect lipid and lipoprotein metabolism.


FEMS Microbiology Ecology | 2016

Rumen bacterial communities shift across a lactation in Holstein, Jersey and Holstein × Jersey dairy cows and correlate to rumen function, bacterial fatty acid composition and production parameters

Melissa L. Bainbridge; Laura M. Cersosimo; André-Denis G. Wright; Jana Kraft

Rumen bacteria form a dynamic, complex, symbiotic relationship with their host, degrading forages to provide volatile fatty acids (VFA) and other substrates as energy to the animal. The objectives were to characterize rumen bacteria in three genetic lines of primiparous dairy cattle, Holstein (HO, n = 7), Jersey (JE, n = 8), and HO × JE crossbreeds (CB, n = 7) across a lactation [3, 93, 183 and 273 days in milk (DIM)] and correlate these factors with VFA, bacterial cell membrane fatty acids (FA), and animal production (i.e. milk yield). This study employed Illumina MiSeq (v. 3) to investigate rumen bacterial communities and gas-liquid chromatography/mass spectroscopy to identify bacterial membrane FA. Lactation stage had a prominent effect on rumen bacterial communities, whereas genetics had a lesser effect on rumen bacteria. The FA composition of bacterial cell membranes was affected by both lactation stage and genetics. Few correlations existed between VFA and bacterial communities; however, moderate correlations occurred between milk yield, protein percentage, fat yield and rumen bacterial communities. Positive correlations were found between branched-chain FA (BCFA) in bacterial cell membranes and bacterial genera. In conclusion, bacterial communities and their FA compositions are more affected by stage of lactation than by genetics of dairy cow.

Collaboration


Dive into the Jana Kraft's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.L. Lock

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.F. Brito

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Joe Roman

University of Vermont

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge