Jana Viskupicova
Slovak Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jana Viskupicova.
Free Radical Research | 2010
Agnieszka Augustyniak; Grzegorz Bartosz; Ana Cipak; Gunars Duburs; Lubica Horakova; Wojciech Łuczaj; Magdalena Majekova; Andreani Odysseos; Lucia Račková; Elżbieta Skrzydlewska; Milan Stefek; Miriam Strosova; Gunars Tirzitis; Petras Rimantas Venskutonis; Jana Viskupicova; Panagiota S. Vraka; Neven Žarković
Abstract The current understanding of the complex role of ROS in the organism and pathological sequelae of oxidative stress points to the necessity of comprehensive studies of antioxidant reactivities and interactions with cellular constituents. Studies of antioxidants performed within the COST B-35 action has concerned the search for new natural antioxidants, synthesis of new antioxidant compounds and evaluation and elucidation of mechanisms of action of both natural and synthetic antioxidants. Representative studies presented in the review concern antioxidant properties of various kinds of tea, the search for new antioxidants of herbal origin, modification of tocopherols and their use in combination with selenium and properties of two promising groups of synthetic antioxidants: derivatives of stobadine and derivatives of 1,4-dihydropyridine.
Redox biology | 2015
Jana Viskupicova; Dušan Blaškovič; Sabina Galiniak; Mirosław Soszyński; Grzegorz Bartosz; Lubica Horakova; Izabela Sadowska-Bartosz
Exposure to high glucose concentrations in vitro is often employed as a model for understanding erythrocyte modifications in diabetes. However, effects of such experiments may be affected by glucose consumption during prolonged incubation and changes of cellular parameters conditioned by impaired energy balance. The aim of this study was to compare alterations in various red cell parameters in this type of experiment to differentiate between those affected by glycoxidation and those affected by energy imbalance. Erythrocytes were incubated with 5, 45 or 100 mM glucose for up to 72 h. High glucose concentrations intensified lipid peroxidation and loss of activities of erythrocyte enzymes (glutathione S-transferase and glutathione reductase). On the other hand, hemolysis, eryptosis, calcium accumulation, loss of glutathione and increase in the GSSG/GSH ratio were attenuated by high glucose apparently due to maintenance of energy supply to the cells. Loss of plasma membrane Ca2+-ATPase activity and decrease in superoxide production were not affected by glucose concentration, being seemingly determined by processes independent of both glycoxidation and energy depletion. These results point to the necessity of careful interpretation of data obtained in experiments, in which erythrocytes are subject to treatment with high glucose concentrations in vitro.
Acta Chimica Slovenica | 2012
Martina Danihelová; Jana Viskupicova; Ernest Šturdík
Lipophilization of flavonoids for their food, therapeutic and cosmetic applications Flavonoids represent large group of plant pigments. These polyphenolic compounds may be found in the nature as active components of fruits, vegetables and other plants and derived products. Due to established biological effects they are attractive substances for many areas of human life. Many flavonoids are nowadays used in pharmaceutical, cosmetic and food preparations. Their practical applications are in most cases limited by low solubility and stability in lipophilic media. Chemical or enzymatic lipophilization of flavonoid skeleton may not only increase their solubility and stability in lipophilic environment but also their biological properties. This review summarizes current knowledge in this field.
Interdisciplinary Toxicology | 2013
Dušan Blaškovič; Petronela Žižková; Filip Držík; Jana Viskupicova; Miroslav Veverka; Ľubica Horáková
Abstract Sarcoplasmic reticulum Ca2+-ATPase (SERCA) is the pump crucial for calcium homeostasis and its impairment results in pathologies such as myopathy, heart failure or diabetes. Modulation of SERCA activity may represent an approach to the therapy of diseases with SERCA impairment involvment. Quercetin is flavonoid known to modulate SERCA activity. We examined the effect of nine novel quercetin derivatives on the activity of the pump. We found that 5-morpholinohydroxypoxyquercetin, di(prenylferuoyl)quercetin, di(diacetylcaffeoyl)-mono-(monoacetylcaffeoyl)quercetin and monoacetylferuloylquercetin stimulated the activity of SERCA. On the contrary, monochloropivaloylquercetin, tri(chloropivaloyl)quercetin, pentaacetylquercetin, tri(trimethylgalloyl)quercetin and diquercetin inhibited the activity of the pump. To identify compounds with a potential to protect SERCA against free radicals, we assessed the free radical scavenging activity of quercetin derivatives. We also related lipophilicity, an index of the ability to incorporate into the membrane of sarcoplasmic reticulum, to the modulatury effect of quercetin derivatives on SERCA activity. In addition to its ability to stimulate SERCA, di(prenylferuloyl)quercetin showed excellent radical scavenging activity.
Archive | 2012
Jana Viskupicova; Miroslav Ondrejovič; Tibor Maliar
Flavonoids comprise a group of plant polyphenols with a broad spectrum of biological activities. They have been shown to exert beneficial effects on human health and play an important role in prevention and/or treatment of several serious diseases, such as cancer, inflammation and cardiovascular disease (Middleton et al., 2000; Rice-Evans, 2001). Flavonoids are important beneficial components of food, pharmaceuticals, cosmetics and various commodity preparations due to their antimutagenic, hepatoprotective (Stefani et al., 1999), antiallergic (Berg & Daniel, 1988), antiviral (Middleton & Chithan, 1993) and antibacterial activity (Tarle & Dvorzak, 1990; Tereschuk et al., 1997; Singh & Nath, 1999; Quarenghi et al., 2000; Rauha et al., 2000). They are known to inhibit nucleic acid synthesis (Plaper et al., 2003; Cushnie & Lamb, 2006), cause disturbance in membranes (Stepanovic et al., 2003; Stapleton et al., 2004; Cushnie & Lamb, 2005) and affect energy metabolism (Haraguchi et al., 1998). But the most studied activity is their antioxidant action since they can readily eliminate reactive oxygen and nitrogen species or degradation products of lipid peroxidation and are thus effective inhibitors of oxidation (Ross & Kasum, 2002).
Journal of Enzyme Inhibition and Medicinal Chemistry | 2012
Jana Viskupicova; Martina Danihelová; Magdalena Majekova; Tibor Liptaj; Ernest Šturdík
We investigated the ability of polyphenol fatty acid esters to inhibit the activity of serine proteases trypsin, thrombin, elastase and urokinase. Potent protease inhibition in micromolar range was displayed by rutin and rutin derivatives esterified with medium and long chain, mono- and polyunsaturated fatty acids (1e–m), followed by phloridzin and esculin esters with medium and long fatty acid chain length (2a–d, 3a–d), while unmodified compounds showed only little or no effect. QSAR study of the compounds tested provided the most significant parameters for individual inhibition activities, i.e. number of hydrogen bond donors for urokinase, molecular volume for thrombin, and solvation energy for elastase. According to the statistical analysis, the action of elastase inhibitors is opposed to those of urokinase and thrombin. Cluster analysis showed two groups of compounds: original polyphenols together with rutin esters with short fatty acid chain length and rutin esters with long fatty acid chain length.
Cell Calcium | 2018
Petronela Zizkova; Jana Viskupicova; Vladimir Heger; Lucia Račková; Magdalena Majekova; Lubica Horakova
A novel pathway of methylglyoxal (MGX)-induced apoptosis via sarcoplasmic reticulum Ca2+-ATPase (SERCA) is presented. Interaction of SERCA1 with MGX was investigated by molecular docking and experimentally in a cell-free system. MGX concentration- and time-dependently decreased SERCA1 activity. A significant increase of sarcoplasmic reticulum (SR) carbonylation was found in the concentration range of 1-10 mM caused by MGX and a decrease of thiol groups at the concentrations of 5 and 40 mM. Affinities of SERCA1 to ATP and Ca2+ were not influenced by MGX, however decreases of Vmax related to both binding sites were observed. Molecular docking indicated binding of MGX at the cytosolic region of SERCA1, inducing conformational changes in the cytosolic-transmembrane interface. This interaction resulted in conformational changes in the cytosolic region (FITC fluorescence decrease) as well as in the transmembrane region of SERCA1 (Trp fluorescence decrease) without direct binding to the cytosolic ATP or transmembrane Ca2+ binding sites. Regarding the MGX inhibitory effect in a cell-free system and similarities of SERCA1 to its other isoforms, proapoptotic properties of MGX may be expected in cellular systems. At cellular level, MGX induced a decrease of SERCA2b expression in the pancreatic INS-1E β-cell line. This was accompanied by cell viability decrease, increase in apoptosis, impaired insulin secretion and elevation of basal intracellular Ca2+ levels. Decreased expression of SERCA2b may contribute to induction of apoptosis of pancreatic β-cells.
Phytotherapy Research | 2017
Jana Viskupicova; Petronela Zizkova; Lucia Račková; Lubica Horakova
Natural standardized flavonoid extract from the bark of Pinus pinaster, Pycnogenol (Pyc), was recently found to decrease intensively the activity of sarcoplasmic reticulum Ca2+‐ATPase of rabbit skeletal muscle (SERCA1). On the basis of this inhibitory effect in a cell‐free system and similarities of SERCA1 to its other isoforms, proapoptotic properties of Pyc may be expected in cellular systems. Pycnogenol (40–100 μg/mL) induced a concentration‐dependent decrease of the viability of pancreatic INS‐1E β cells associated with induction of apoptosis. In addition, intracellular Ca2+ level increase was found along with reduction of protein expression level of SERCA2b and impairment of insulin secretion by β cells. These facts indicate that Pyc may induce apoptosis by impairment of calcium homeostasis. Copyright
Journal of Enzyme Inhibition and Medicinal Chemistry | 2014
Petronela Žižková; Jana Viskupicova; Dušan Blaškovič; Miriam K. Štrosová; Neven Žarković; Ľubica Horáková
Abstract Objective: Effect of peroxynitrite on SERCA1 activity was studied in correlation with enzyme carbonylation. Kinetic parameters and location of peroxynitrite effect on SERCA1 were determined. Methods: Carbonyls were determined by immunoblotting. FITC, NCD-4 and Trp fluorescence were used to indicate changes in cytosolic and transmembrane regions of SERCA1. Results: Peroxynitrite-concentration-dependent decrease of SERCA1 activity was associated with elevation of protein carbonyls. 4-HNE was not involved in carbonylation of SERCA1. Increased FITC fluorescence in the presence of peroxynitrite correlated with the decrease of the enzyme affinity to ATP. Discussion and conclusion: Peroxynitrite-induced SERCA1 carbonylation that was not accompanied with the formation of 4-HNE-SERCA1 adducts is indicative of direct oxidation of SERCA1. As assessed by FITC fluorescence and decreased affinity of the enzyme to ATP, peroxynitrite impairment was found to occur in the cytosolic ATP-binding region of SERCA1.
Food Chemistry | 2010
Jana Viskupicova; Martina Danihelová; Miroslav Ondrejovič; Tibor Liptaj; Ernest Šturdík