Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janakiraman Krishnamurthy is active.

Publication


Featured researches published by Janakiraman Krishnamurthy.


Nature | 2006

Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing

Anna V. Molofsky; Shalom G. Slutsky; Nancy M. Joseph; Shenghui He; Ricardo Pardal; Janakiraman Krishnamurthy; Norman E. Sharpless; Sean J. Morrison

Mammalian ageing is associated with reduced regenerative capacity in tissues that contain stem cells. It has been proposed that this is at least partially caused by the senescence of progenitors with age; however, it has not yet been tested whether genes associated with senescence functionally contribute to physiological declines in progenitor activity. Here we show that progenitor proliferation in the subventricular zone and neurogenesis in the olfactory bulb, as well as multipotent progenitor frequency and self-renewal potential, all decline with age in the mouse forebrain. These declines in progenitor frequency and function correlate with increased expression of p16INK4a, which encodes a cyclin-dependent kinase inhibitor linked to senescence. Ageing p16INK4a-deficient mice showed a significantly smaller decline in subventricular zone proliferation, olfactory bulb neurogenesis, and the frequency and self-renewal potential of multipotent progenitors. p16INK4a deficiency did not detectably affect progenitor function in the dentate gyrus or enteric nervous system, indicating regional differences in the response of neural progenitors to increased p16INK4a expression during ageing. Declining subventricular zone progenitor function and olfactory bulb neurogenesis during ageing are thus caused partly by increasing p16INK4a expression.


Journal of Clinical Investigation | 2004

Ink4a/Arf expression is a biomarker of aging

Janakiraman Krishnamurthy; Chad Torrice; Matthew R. Ramsey; Grigoriy I. Kovalev; Khalid Al-Regaiey; Lishan Su; Norman E. Sharpless

The Ink4a/Arf locus encodes 2 tumor suppressor molecules, p16INK4a and Arf, which are principal mediators of cellular senescence. To study the links between senescence and aging in vivo, we examined Ink4a/Arf expression in rodent models of aging. We show that expression of p16INK4a and Arf markedly increases in almost all rodent tissues with advancing age, while there is little or no change in the expression of other related cell cycle inhibitors. The increase in expression is restricted to well-defined compartments within each organ studied and occurs in both epithelial and stromal cells of diverse lineages. The age-associated increase in expression of p16INK4a and Arf is attenuated in the kidney, ovary, and heart by caloric restriction, and this decrease correlates with diminished expression of an in vivo marker of senescence, as well as decreased pathology of those organs. Last, the age-related increase in Ink4a/Arf expression can be independently attributed to the expression of Ets-1, a known p16INK4a transcriptional activator, as well as unknown Ink4a/Arf coregulatory molecules. These data suggest that expression of the Ink4a/Arf tumor suppressor locus is a robust biomarker, and possible effector, of mammalian aging.


Nature | 2006

p16INK4a induces an age-dependent decline in islet regenerative potential.

Janakiraman Krishnamurthy; Matthew R. Ramsey; Keith L. Ligon; Chad Torrice; Angela Koh; Susan Bonner-Weir; Norman E. Sharpless

The p16INK4a tumour suppressor accumulates in many tissues as a function of advancing age. p16INK4a is an effector of senescence and a potent inhibitor of the proliferative kinase Cdk4 (ref. 6), which is essential for pancreatic β-cell proliferation in adult mammals. Here we show that p16INK4a constrains islet proliferation and regeneration in an age-dependent manner. Expression of the p16INK4a transcript is enriched in purified islets compared with the exocrine pancreas, and islet-specific expression of p16INK4a, but not other cyclin-dependent kinase inhibitors, increases markedly with ageing. To determine the physiological significance of p16INK4a accumulation on islet function, we assessed the impact of p16INK4a deficiency and overexpression with increasing age and in the regenerative response after exposure to a specific β-cell toxin. Transgenic mice that overexpress p16INK4a to a degree seen with ageing demonstrated decreased islet proliferation. Similarly, islet proliferation was unaffected by p16INK4a deficiency in young mice, but was relatively increased in p16INK4a-deficient old mice. Survival after toxin-mediated ablation of β-cells, which requires islet proliferation, declined with advancing age; however, mice lacking p16INK4a demonstrated enhanced islet proliferation and survival after β-cell ablation. These genetic data support the view that an age-induced increase of p16INK4a expression limits the regenerative capacity of β-cells with ageing.


Nature | 2007

LKB1 modulates lung cancer differentiation and metastasis.

Hongbin Ji; Matthew R. Ramsey; D. Neil Hayes; Cheng Fan; Kate McNamara; Piotr Kozlowski; Chad Torrice; Michael C. Wu; Takeshi Shimamura; Samanthi A. Perera; Mei Chih Liang; Dongpo Cai; George N. Naumov; Lei Bao; Cristina M. Contreras; Danan Li; Liang Chen; Janakiraman Krishnamurthy; Jussi Koivunen; Lucian R. Chirieac; Robert F. Padera; Roderick T. Bronson; Neal I. Lindeman; David C. Christiani; Xihong Lin; Geoffrey I. Shapiro; Pasi A. Jänne; Bruce E. Johnson; Matthew Meyerson; David J. Kwiatkowski

Germline mutation in serine/threonine kinase 11 (STK11, also called LKB1) results in Peutz–Jeghers syndrome, characterized by intestinal hamartomas and increased incidence of epithelial cancers. Although uncommon in most sporadic cancers, inactivating somatic mutations of LKB1 have been reported in primary human lung adenocarcinomas and derivative cell lines. Here we used a somatically activatable mutant Kras-driven model of mouse lung cancer to compare the role of Lkb1 to other tumour suppressors in lung cancer. Although Kras mutation cooperated with loss of p53 or Ink4a/Arf (also known as Cdkn2a) in this system, the strongest cooperation was seen with homozygous inactivation of Lkb1. Lkb1-deficient tumours demonstrated shorter latency, an expanded histological spectrum (adeno-, squamous and large-cell carcinoma) and more frequent metastasis compared to tumours lacking p53 or Ink4a/Arf. Pulmonary tumorigenesis was also accelerated by hemizygous inactivation of Lkb1. Consistent with these findings, inactivation of LKB1 was found in 34% and 19% of 144 analysed human lung adenocarcinomas and squamous cell carcinomas, respectively. Expression profiling in human lung cancer cell lines and mouse lung tumours identified a variety of metastasis-promoting genes, such as NEDD9, VEGFC and CD24, as targets of LKB1 repression in lung cancer. These studies establish LKB1 as a critical barrier to pulmonary tumorigenesis, controlling initiation, differentiation and metastasis.


Laboratory Investigation | 2007

RNA expression analysis of formalin-fixed paraffin-embedded tumors

Shannon Penland; Temitope O. Keku; Chad Torrice; Xiaping He; Janakiraman Krishnamurthy; Katherine A. Hoadley; John T. Woosley; Nancy E. Thomas; Charles M. Perou; Robert S. Sandler; Norman E. Sharpless

RNA expression analysis is an important tool in cancer research, but a limitation has been the requirement for high-quality RNA, generally derived from frozen samples. Such tumor sets are often small and lack clinical annotation, whereas formalin-fixed paraffin-embedded (FFPE) materials are abundant. Although RT-PCR-based methods from FFPE samples are finding clinical application, genome-wide microarray analysis has proven difficult. Here, we report expression profiling on RNA from 157 FFPE tumors. RNA was extracted from 2- to 8-year-old FFPE or frozen tumors of known and unknown histologies. Total RNA was analyzed, reverse-transcribed and used for the synthesis of labeled aRNA after two rounds of amplification. Labeled aRNA was hybridized to a 3′-based 22K spot oligonucleotide arrays, and compared to a labeled reference by two-color microarray analysis. After normalization, gene expression profiles were compared by unsupervised hierarchical clustering. Using this approach, at least 24% of unselected FFPE samples produced RNA of sufficient quality for microarray analysis. From our initial studies, we determined criteria based on spectrophotometric analyses and a novel TaqMan-based assay to predict which samples were of sufficient quality for microarray analysis before hybridization. These criteria were validated on an independent set of tumors with a 100% success rate (20 of 20). Unsupervised analysis of informative gene expression profiles distinguished tumor type and subtype, and identified tumor tissue of origin in three unclassified carcinomas. Although only a minority of FFPE blocks could be analyzed, we show that informative RNA expression analysis can be derived from selected FFPE samples.


Cell | 2013

Monitoring tumorigenesis and senescence in vivo with a p16 INK4a-luciferase model

Christin E. Burd; Jessica A. Sorrentino; Kelly S. Clark; David B. Darr; Janakiraman Krishnamurthy; Allison M. Deal; Nabeel Bardeesy; Diego H. Castrillon; David Beach; Norman E. Sharpless

Monitoring cancer and aging in vivo remains experimentally challenging. Here, we describe a luciferase knockin mouse (p16(LUC)), which faithfully reports expression of p16(INK4a), a tumor suppressor and aging biomarker. Lifelong assessment of luminescence in p16(+/LUC) mice revealed an exponential increase with aging, which was highly variable in a cohort of contemporaneously housed, syngeneic mice. Expression of p16(INK4a) with aging did not predict cancer development, suggesting that the accumulation of senescent cells is not a principal determinant of cancer-related death. In 14 of 14 tested tumor models, expression of p16(LUC) was focally activated by early neoplastic events, enabling visualization of tumors with sensitivity exceeding other imaging modalities. Activation of p16(INK4a) was noted in the emerging neoplasm and surrounding stromal cells. This work suggests that p16(INK4a) activation is a characteristic of all emerging cancers, making the p16(LUC) allele a sensitive, unbiased reporter of neoplastic transformation.


Blood | 2011

Expression of p16INK4a prevents cancer and promotes aging in lymphocytes

Yan Liu; Soren Johnson; Yuri Fedoriw; Arlin B. Rogers; Hong Yuan; Janakiraman Krishnamurthy; Norman E. Sharpless

Previous authors have suggested that tumor suppressor expression promotes aging while preventing cancer, but direct experimental support for this cancer-aging hypothesis has been elusive. Here, by using somatic, tissue-specific inactivation of the p16(INK4a) tumor suppressor in murine T- or B-lymphoid progenitors, we report that ablation of p16(INK4a) can either rescue aging or promote cancer in a lineage-specific manner. Deletion of p16(INK4a) in the T lineage ameliorated several aging phenotypes, including thymic involution, decreased production of naive T cells, reduction in homeostatic T-cell proliferation, and attenuation of antigen-specific immune responses. Increased T-cell neoplasia was not observed with somatic p16(INK4a) inactivation in T cells. In contrast, B lineage-specific ablation of p16(INK4a) was associated with a markedly increased incidence of systemic, high-grade B-cell neoplasms, which limited studies of the effects of somatic p16(INK4a) ablation on B-cell aging. Together, these data show that expression of p16(INK4a) can promote aging and prevent cancer in related lymphoid progeny of a common stem cell.


Developmental Cell | 2009

p38MAPK Controls Expression of Multiple Cell Cycle Inhibitors and Islet Proliferation with Advancing Age

Esther Sook Miin Wong; Xavier Le Guezennec; Oleg N. Demidov; Nicolette Theresa Marshall; Siew Tein Wang; Janakiraman Krishnamurthy; Norman E. Sharpless; N. Ray Dunn; Dmitry V. Bulavin

Aging is a complex organismal process that is controlled by genetic, environmental, and behavioral factors. Accumulating evidence supports a role for different cell cycle inhibitors in mammalian aging. Little is known, however, about the upstream signals that induce their expression. Here, we explore the role of p38MAPK by generating a dominant-negative allele (p38(AF)) in which activating phosphorylation sites Thr180 and Tyr182 are mutated. Heterozygous p38(AF) mice show a marked attenuation of p38-dependent signaling and age-induced expression of multiple cell cycle inhibitors in different organs, including pancreatic islets. As a result, aged p38(AF/+) mice show enhanced proliferation and regeneration of islets when compared to wild-type littermates. We further find an age-related reduction in expression of the p38-specific phosphatase Wip1. Wip1-deficient mice demonstrate decreased islet proliferation, while Wip1 overexpression rescues aging-related decline in proliferation and regenerative capacity. We propose that modulation of p38MAPK activity may provide new avenues for treating certain age-related degenerative diseases.


Journal of the National Cancer Institute | 2014

Effect of Cytotoxic Chemotherapy on Markers of Molecular Age in Patients With Breast Cancer

Hanna K. Sanoff; Allison M. Deal; Janakiraman Krishnamurthy; Chad Torrice; Patrick M. Dillon; Jessica A. Sorrentino; Joseph G. Ibrahim; Trevor Augustus Jolly; Grant R. Williams; Lisa A. Carey; Amy Drobish; Brittaney Belle Gordon; Shani Alston; Arti Hurria; Karin Kleinhans; K. Lenhard Rudolph; Norman E. Sharpless; Hyman B. Muss

BACKGROUND Senescent cells, which express p16 (INK4a) , accumulate with aging and contribute to age-related pathology. To understand whether cytotoxic agents promote molecular aging, we measured expression of p16 (INK4a) and other senescence markers in breast cancer patients treated with adjuvant chemotherapy. METHODS Blood and clinical information were prospectively obtained from 33 women with stage I to III breast cancer at four time points: before anthracycline-based chemotherapy, immediately after anthracycline-based chemotherapy, 3 months after anthracycline-based chemotherapy, and 12 months after anthracycline-based chemotherapy. Expression of senescence markers p16 (INK4a) and ARF mRNA was determined using TaqMan quantitative reverse-transcription polymerase chain reaction in CD3(+) T lymphocytes, telomere length was determined by Southern analysis, and senescence-associated cytokines were determined by enzyme-linked immunosorbent assay. Findings were independently assessed in a cross-sectional cohort of 176 breast cancer survivors enrolled a median of 3.4 years after treatment; 39% previously received chemotherapy. All statistical tests were two-sided. RESULTS In prospectively analyzed patients, expression of p16 (INK4a) and ARF increased immediately after chemotherapy and remained elevated 12 months after treatment. Median increase in log2 p16 (INK4a) was 0.81 (interquartile range = 0.28-1.62; Wilcoxon signed-rank P < .001), or a 75% absolute increase in expression, equivalent to the increase observed over 14.7 years of chronological aging. ARF expression was comparably increased (P < .001). Increased expression of p16 (INK4a) and ARF was associated with dose-dense therapy and hematological toxicity. Expression of two senescence-associated cytokines (VEGFA and MCP1) was durably increased by adjuvant chemotherapy. Telomere length was not affected by chemotherapy. In a cross-sectional cohort, prior chemotherapy exposure was independently associated with a log2-increase in p16 (INK4a) expression of 0.57 (repeated measures model, P < .001), comparable with 10.4 years of chronological aging. CONCLUSIONS Adjuvant chemotherapy for breast cancer is gerontogenic, inducing cellular senescence in vivo, thereby accelerating molecular aging of hematopoietic tissues.


Cancer Research | 2007

Expression of p16Ink4a compensates for p18Ink4c loss in cyclin-dependent kinase 4/6-dependent tumors and tissues.

Matthew R. Ramsey; Janakiraman Krishnamurthy; Xin Hai Pei; Chad Torrice; Weili Lin; Daniel R. Carrasco; Keith L. Ligon; Yue Xiong; Norman E. Sharpless

Cell cycle progression from G(1) to S phase depends on phosphorylation of pRb by complexes containing a cyclin (D type or E type) and cyclin-dependent kinase (e.g., cdk2, cdk4, or cdk6). Ink4 proteins function to oppose the action of cdk4/6-cyclin D complexes by inhibiting cdk4/6. We employed genetic and pharmacologic approaches to study the interplay among Ink4 proteins and cdk4/6 activity in vivo. Mouse embryo fibroblasts (MEF) lacking p16(Ink4a) and p18(Ink4c) showed similar growth kinetics as wild-type MEFs despite increased cdk4 activity. In vivo, germline deficiency of p16(Ink4a) and p18(Ink4c) resulted in increased proliferation in the intermediate pituitary and pancreatic islets of adult mice, and survival of p16(Ink4a-/-);p18(Ink4c-/-) mice was significantly reduced due to aggressive pituitary tumors. Compensation among the Ink4 proteins was observed both in vivo in p18(Ink4c-/-) mice and in MEFs from p16(Ink4a-/-), p18(Ink4c-/-), or p16(Ink4a-/-);p18(Ink4c-/-) mice. Treatment with PD 0332991, a specific cdk4/6 kinase inhibitor, abrogated proliferation in those compartments where Ink4 deficiency was associated with enhanced proliferation (i.e., islets, pituitary, and B lymphocytes) but had no effect on proliferation in other tissues such as the small bowel. These data suggest that p16(Ink4a) and p18(Ink4c) coordinately regulate the in vivo catalytic activity of cdk4/6 in specific compartments of adult mice.

Collaboration


Dive into the Janakiraman Krishnamurthy's collaboration.

Top Co-Authors

Avatar

Norman E. Sharpless

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Chad Torrice

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Liu

European Organisation for Research and Treatment of Cancer

View shared research outputs
Top Co-Authors

Avatar

Allison M. Deal

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank C. Church

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Herbert C. Whinna

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jessica C. Cardenas

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge