Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew R. Ramsey is active.

Publication


Featured researches published by Matthew R. Ramsey.


Journal of Clinical Investigation | 2004

Ink4a/Arf expression is a biomarker of aging

Janakiraman Krishnamurthy; Chad Torrice; Matthew R. Ramsey; Grigoriy I. Kovalev; Khalid Al-Regaiey; Lishan Su; Norman E. Sharpless

The Ink4a/Arf locus encodes 2 tumor suppressor molecules, p16INK4a and Arf, which are principal mediators of cellular senescence. To study the links between senescence and aging in vivo, we examined Ink4a/Arf expression in rodent models of aging. We show that expression of p16INK4a and Arf markedly increases in almost all rodent tissues with advancing age, while there is little or no change in the expression of other related cell cycle inhibitors. The increase in expression is restricted to well-defined compartments within each organ studied and occurs in both epithelial and stromal cells of diverse lineages. The age-associated increase in expression of p16INK4a and Arf is attenuated in the kidney, ovary, and heart by caloric restriction, and this decrease correlates with diminished expression of an in vivo marker of senescence, as well as decreased pathology of those organs. Last, the age-related increase in Ink4a/Arf expression can be independently attributed to the expression of Ets-1, a known p16INK4a transcriptional activator, as well as unknown Ink4a/Arf coregulatory molecules. These data suggest that expression of the Ink4a/Arf tumor suppressor locus is a robust biomarker, and possible effector, of mammalian aging.


Nature | 2006

p16INK4a induces an age-dependent decline in islet regenerative potential.

Janakiraman Krishnamurthy; Matthew R. Ramsey; Keith L. Ligon; Chad Torrice; Angela Koh; Susan Bonner-Weir; Norman E. Sharpless

The p16INK4a tumour suppressor accumulates in many tissues as a function of advancing age. p16INK4a is an effector of senescence and a potent inhibitor of the proliferative kinase Cdk4 (ref. 6), which is essential for pancreatic β-cell proliferation in adult mammals. Here we show that p16INK4a constrains islet proliferation and regeneration in an age-dependent manner. Expression of the p16INK4a transcript is enriched in purified islets compared with the exocrine pancreas, and islet-specific expression of p16INK4a, but not other cyclin-dependent kinase inhibitors, increases markedly with ageing. To determine the physiological significance of p16INK4a accumulation on islet function, we assessed the impact of p16INK4a deficiency and overexpression with increasing age and in the regenerative response after exposure to a specific β-cell toxin. Transgenic mice that overexpress p16INK4a to a degree seen with ageing demonstrated decreased islet proliferation. Similarly, islet proliferation was unaffected by p16INK4a deficiency in young mice, but was relatively increased in p16INK4a-deficient old mice. Survival after toxin-mediated ablation of β-cells, which requires islet proliferation, declined with advancing age; however, mice lacking p16INK4a demonstrated enhanced islet proliferation and survival after β-cell ablation. These genetic data support the view that an age-induced increase of p16INK4a expression limits the regenerative capacity of β-cells with ageing.


Nature | 2007

LKB1 modulates lung cancer differentiation and metastasis.

Hongbin Ji; Matthew R. Ramsey; D. Neil Hayes; Cheng Fan; Kate McNamara; Piotr Kozlowski; Chad Torrice; Michael C. Wu; Takeshi Shimamura; Samanthi A. Perera; Mei Chih Liang; Dongpo Cai; George N. Naumov; Lei Bao; Cristina M. Contreras; Danan Li; Liang Chen; Janakiraman Krishnamurthy; Jussi Koivunen; Lucian R. Chirieac; Robert F. Padera; Roderick T. Bronson; Neal I. Lindeman; David C. Christiani; Xihong Lin; Geoffrey I. Shapiro; Pasi A. Jänne; Bruce E. Johnson; Matthew Meyerson; David J. Kwiatkowski

Germline mutation in serine/threonine kinase 11 (STK11, also called LKB1) results in Peutz–Jeghers syndrome, characterized by intestinal hamartomas and increased incidence of epithelial cancers. Although uncommon in most sporadic cancers, inactivating somatic mutations of LKB1 have been reported in primary human lung adenocarcinomas and derivative cell lines. Here we used a somatically activatable mutant Kras-driven model of mouse lung cancer to compare the role of Lkb1 to other tumour suppressors in lung cancer. Although Kras mutation cooperated with loss of p53 or Ink4a/Arf (also known as Cdkn2a) in this system, the strongest cooperation was seen with homozygous inactivation of Lkb1. Lkb1-deficient tumours demonstrated shorter latency, an expanded histological spectrum (adeno-, squamous and large-cell carcinoma) and more frequent metastasis compared to tumours lacking p53 or Ink4a/Arf. Pulmonary tumorigenesis was also accelerated by hemizygous inactivation of Lkb1. Consistent with these findings, inactivation of LKB1 was found in 34% and 19% of 144 analysed human lung adenocarcinomas and squamous cell carcinomas, respectively. Expression profiling in human lung cancer cell lines and mouse lung tumours identified a variety of metastasis-promoting genes, such as NEDD9, VEGFC and CD24, as targets of LKB1 repression in lung cancer. These studies establish LKB1 as a critical barrier to pulmonary tumorigenesis, controlling initiation, differentiation and metastasis.


Molecular and Cellular Biology | 2002

A Two-Stage, p16INK4A- and p53-Dependent Keratinocyte Senescence Mechanism That Limits Replicative Potential Independent of Telomere Status

James G. Rheinwald; William C. Hahn; Matthew R. Ramsey; Jenny Y. Wu; Zongyou Guo; Hensin Tsao; Michele De Luca; Caterina Catricalà; Kathleen M. O'Toole

ABSTRACT With increasing frequency during serial passage in culture, primary human keratinocytes express p16INK4A (p16) and undergo senescence arrest. Keratinocytes engineered to express hTERT maintain long telomeres but typically are not immortalized unless, by mutation or other heritable event, they avoid or greatly reduce p16 expression. We have confirmed that keratinocytes undergo p16-related senescence during growth in culture, whether in the fibroblast feeder cell system or in the specialized K-sfm medium formulation, and that this mechanism can act as a barrier to immortalization following hTERT expression. We have characterized the p16-related arrest mechanism more precisely by interfering specifically with several regulators of cell cycle control. Epidermal, oral mucosal, corneal limbal, and conjunctival keratinocytes were transduced to express a p16-insensitive mutant cdk4 (cdk4R24C), to abolish p16 control, and/or a dominant negative mutant p53 (p53DD), to abolish p53 function. Expression of either cdk4R24C or p53DD alone had little effect on life span, but expression of both permitted cells to divide 25 to 43 population doublings (PD) beyond their normal limit. Keratinocytes from a p16+/− individual transduced to express p53DD alone displayed a 31-PD life span extension associated with selective growth of variants that had lost the wild-type p16 allele. Cells in which both p53 and p16 were nonfunctional divided rapidly during their extended life span but experienced telomere erosion and ultimately ceased growth with very short telomeres. Expression of hTERT in these cells immortalized them. Keratinocytes engineered to express cdk4R24C and hTERT but not p53DD did not exhibit an extended life span. Rare immortal variants exhibiting p53 pathway defects arose from them, however, indicating that the p53-dependent component of keratinocyte senescence is telomere independent. Mutational loss of p16 and p53 has been found to be a frequent early event in the development of squamous cell carcinoma. Our results suggest that such mutations endow keratinocytes with extended replicative potential which may serve to increase the probability of neoplastic progression.


Oncogene | 2004

The differential impact of p16INK4a or p19ARF deficiency on cell growth and tumorigenesis

Norman E. Sharpless; Matthew R. Ramsey; Periasamy Balasubramanian; Diego H. Castrillon; Ronald A. DePinho

Mounting genetic evidence suggests that each product of the Ink4a/Arf locus, p16INK4a and p19ARF, possesses tumor-suppressor activity (Kamijo et al., 1997; Krimpenfort et al., 2001; Sharpless et al., 2001a). We report the generation and characterization of a p19ARF-specific knockout allele (p19ARF−/−) and direct comparison with mice and derivative cells deficient for p16INK4a, both p16INK4a and p19ARF, and p53. Like Ink4a/Arf−/− murine embryo fibroblasts (MEFs), p19ARF−/− MEFs were highly susceptible to oncogenic transformation, exhibited enhanced subcloning efficiency at low density, and resisted both RAS- and culture-induced growth arrest. In contrast, the biological profile of p16INK4a−/− MEFs in these assays more closely resembled that of wild-type cells. In vivo, however, both p19ARF−/− and p16INK4a−/− animals were significantly more tumor prone than wild-type animals, but each less so than p53−/− or Ink4a/Arf−/− animals, and with differing tumor spectra. These data confirm the predominant role of p19ARF over p16INK4a in cell culture-based assays of MEFs, yet also underscore the importance of the analysis of tumor suppressors across many cell types within the organism. The cancer-prone conditions of mice singly deficient for either p16INK4a or p19ARF agree with data derived from human cancer genetics, and reinforce the view that both gene products play significant and nonredundant roles in suppressing malignant transformation in vivo.


Nature Cell Biology | 2006

ROS as a tumour suppressor

Matthew R. Ramsey; Norman E. Sharpless

Senescence is an important mechanism for suppressing mammalian tumours and it may also contribute to aging. A new study suggests that changes in the metabolism of oxygen radicals are important for establishing senescence and blocking cytokinesis to ensure senescent cells never divide again.


Journal of Clinical Investigation | 2010

Mitigation of hematologic radiation toxicity in mice through pharmacological quiescence induced by CDK4/6 inhibition

Soren Johnson; Chad Torrice; Jessica F. Bell; Kimberly B. Monahan; Qi Jiang; Yong Wang; Matthew R. Ramsey; Jian Jin; Kwok-Kin Wong; Lishan Su; Daohong Zhou; Norman E. Sharpless

Total body irradiation (TBI) can induce lethal myelosuppression, due to the sensitivity of proliferating hematopoietic stem/progenitor cells (HSPCs) to ionizing radiation (IR). No effective therapy exists to mitigate the hematologic toxicities of TBI. Here, using selective and structurally distinct small molecule inhibitors of cyclin-dependent kinase 4 (CDK4) and CDK6, we have demonstrated that selective cellular quiescence increases radioresistance of human cell lines in vitro and mice in vivo. Cell lines dependent on CDK4/6 were resistant to IR and other DNA-damaging agents when treated with CDK4/6 inhibitors. In contrast, CDK4/6 inhibitors did not protect cell lines that proliferated independently of CDK4/6 activity. Treatment of wild-type mice with CDK4/6 inhibitors induced reversible pharmacological quiescence (PQ) of early HSPCs but not most other cycling cells in the bone marrow or other tissues. Selective PQ of HSPCs decreased the hematopoietic toxicity of TBI, even when the CDK4/6 inhibitor was administered several hours after TBI. Moreover, PQ at the time of administration of therapeutic IR to mice harboring autochthonous cancers reduced treatment toxicity without compromising the therapeutic tumor response. These results demonstrate an effective method to mitigate the hematopoietic toxicity of IR in mammals, which may be potentially useful after radiological disaster or as an adjuvant to anticancer therapy.


Cancer Research | 2007

Expression of p16Ink4a compensates for p18Ink4c loss in cyclin-dependent kinase 4/6-dependent tumors and tissues.

Matthew R. Ramsey; Janakiraman Krishnamurthy; Xin Hai Pei; Chad Torrice; Weili Lin; Daniel R. Carrasco; Keith L. Ligon; Yue Xiong; Norman E. Sharpless

Cell cycle progression from G(1) to S phase depends on phosphorylation of pRb by complexes containing a cyclin (D type or E type) and cyclin-dependent kinase (e.g., cdk2, cdk4, or cdk6). Ink4 proteins function to oppose the action of cdk4/6-cyclin D complexes by inhibiting cdk4/6. We employed genetic and pharmacologic approaches to study the interplay among Ink4 proteins and cdk4/6 activity in vivo. Mouse embryo fibroblasts (MEF) lacking p16(Ink4a) and p18(Ink4c) showed similar growth kinetics as wild-type MEFs despite increased cdk4 activity. In vivo, germline deficiency of p16(Ink4a) and p18(Ink4c) resulted in increased proliferation in the intermediate pituitary and pancreatic islets of adult mice, and survival of p16(Ink4a-/-);p18(Ink4c-/-) mice was significantly reduced due to aggressive pituitary tumors. Compensation among the Ink4 proteins was observed both in vivo in p18(Ink4c-/-) mice and in MEFs from p16(Ink4a-/-), p18(Ink4c-/-), or p16(Ink4a-/-);p18(Ink4c-/-) mice. Treatment with PD 0332991, a specific cdk4/6 kinase inhibitor, abrogated proliferation in those compartments where Ink4 deficiency was associated with enhanced proliferation (i.e., islets, pituitary, and B lymphocytes) but had no effect on proliferation in other tissues such as the small bowel. These data suggest that p16(Ink4a) and p18(Ink4c) coordinately regulate the in vivo catalytic activity of cdk4/6 in specific compartments of adult mice.


Journal of Clinical Investigation | 2013

FGFR2 signaling underlies p63 oncogenic function in squamous cell carcinoma

Matthew R. Ramsey; Catherine Wilson; Benjamin Ory; S. Michael Rothenberg; William C. Faquin; Alea A. Mills; Leif W. Ellisen

Oncogenic transcription factors drive many human cancers, yet identifying and therapeutically targeting the resulting deregulated pathways has proven difficult. Squamous cell carcinoma (SCC) is a common and lethal human cancer, and relatively little progress has been made in improving outcomes for SCC due to a poor understanding of its underlying molecular pathogenesis. While SCCs typically lack somatic oncogene-activating mutations, they exhibit frequent overexpression of the p53-related transcription factor p63. We developed an in vivo murine tumor model to investigate the function and key transcriptional programs of p63 in SCC. Here, we show that established SCCs are exquisitely dependent on p63, as acute genetic ablation of p63 in advanced, invasive SCC induced rapid and dramatic apoptosis and tumor regression. In vivo genome-wide gene expression analysis identified a tumor-survival program involving p63-regulated FGFR2 signaling that was activated by ligand emanating from abundant tumor-associated stroma. Correspondingly, we demonstrate the therapeutic efficacy of extinguishing this signaling axis in endogenous SCCs using the clinical FGFR2 inhibitor AZD4547. Collectively, these results reveal an unanticipated role for p63-driven paracrine FGFR2 signaling as an addicting pathway in human cancer and suggest a new approach for the treatment of SCC.


Cancer Research | 2011

Physical association of HDAC1 and HDAC2 with p63 mediates transcriptional repression and tumor maintenance in squamous cell carcinoma

Matthew R. Ramsey; Lei He; Nicole Forster; Benjamin Ory; Leif W. Ellisen

Squamous cell carcinoma (SCC) is a treatment-refractory subtype of human cancer arising from stratified epithelium of the skin, lung, esophagus, oropharynx, and other tissues. A unifying feature of SCC is high-level expression of the p53-related protein p63 (TP63) in 80% of cases. The major protein isoform of p63 expressed in SCC is ΔNp63α, an N-terminally truncated form which functions as a key SCC cell survival factor by mechanisms that are unclear. In this study, we show that ΔNp63α associates with histone deacetylase 1 (HDAC1) and HDAC2 to form an active transcriptional repressor complex that can be targeted to therapeutic advantage. Repression of proapoptotic Bcl-2 family member genes including p53 upregulated modulator of apoptosis (PUMA) by p63/HDAC is required for survival of SCC cells. Cisplatin chemotherapy, a mainstay of SCC treatment, promotes dissociation of p63 and HDAC from the PUMA promoter, leading to increased histone acetylation, PUMA activation, and apoptosis. These effects are recapitulated upon targeting the p63/HDAC complex selectively with class I/II HDAC inhibitors using both in vitro and in vivo models. Sensitivity to HDAC inhibition is directly correlated with p63 expression and is abrogated in tumor cells that overexpress endogenous Bcl-2. Together, our results elucidate a mechanism of p63-mediated transcriptional repression and they identify the ΔNp63α/HDAC complex as an essential tumor maintenance factor in SCC. In addition, our findings offer a rationale to apply HDAC inhibitors for SCC treatment.

Collaboration


Dive into the Matthew R. Ramsey's collaboration.

Top Co-Authors

Avatar

Norman E. Sharpless

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chad Torrice

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janakiraman Krishnamurthy

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alea A. Mills

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jessica F. Bell

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge