Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jane A. Plumb is active.

Publication


Featured researches published by Jane A. Plumb.


Journal of the American Chemical Society | 2010

Gold Nanoparticles for the Improved Anticancer Drug Delivery of the Active Component of Oxaliplatin

Sarah D. Brown; Paola Nativo; Jo-Ann Smith; David Stirling; P. R. Edwards; Balaji Venugopal; David J. Flint; Jane A. Plumb; Duncan Graham; Nial J. Wheate

The platinum-based anticancer drugs cisplatin, carboplatin, and oxaliplatin are an important component of chemotherapy but are limited by severe dose-limiting side effects and the ability of tumors to develop resistance rapidly. These drugs can be improved through the use of drug-delivery vehicles that are able to target cancers passively or actively. In this study, we have tethered the active component of the anticancer drug oxaliplatin to a gold nanoparticle for improved drug delivery. Naked gold nanoparticles were functionalized with a thiolated poly(ethylene glycol) (PEG) monolayer capped with a carboxylate group. [Pt(1R,2R-diaminocyclohexane)(H2O)2]2NO3 was added to the PEG surface to yield a supramolecular complex with 280 (±20) drug molecules per nanoparticle. The platinum-tethered nanoparticles were examined for cytotoxicity, drug uptake, and localization in the A549 lung epithelial cancer cell line and the colon cancer cell lines HCT116, HCT15, HT29, and RKO. The platinum-tethered nanoparticles demonstrated as good as, or significantly better, cytotoxicity than oxaliplatin alone in all of the cell lines and an unusual ability to penetrate the nucleus in the lung cancer cells.


Clinical Cancer Research | 2008

A Phase 1 Pharmacokinetic and Pharmacodynamic Study of the Histone Deacetylase Inhibitor Belinostat in Patients with Advanced Solid Tumors

Nicola Steele; Jane A. Plumb; L. Vidal; J. Tjørnelund; P. Knoblauch; A. Rasmussen; C. E Ooi; P. Buhl-Jensen; Robert Brown; T. R. J. Evans; J. S. DeBono

Purpose: To determine the safety, dose-limiting toxicity, maximum tolerated dose, and pharmacokinetic and pharmacodynamic profiles of the novel hydroxamate histone deacetylase inhibitor belinostat (previously named PXD101) in patients with advanced refractory solid tumors. Experimental Design: Sequential dose-escalating cohorts of three to six patients received belinostat administered as a 30-min i.v. infusion on days 1 to 5 of a 21-day cycle. Pharmacokinetic variables were evaluated at all dose levels. Pharmacodynamic measurements included acetylation of histones extracted from peripheral blood mononuclear cells, caspase-dependent cleavage of cytokeratin-18, and interleukin-6 levels. Results: Forty-six patients received belinostat at one of six dose levels (150-1,200 mg/m2/d). Dose-limiting toxicities were grade 3 fatigue (one patient at 600 mg/m2; one patient at 1,200 mg/m2), grade 3 diarrhea combined with fatigue (one patient at 1,200 mg/m2), grade 3 atrial fibrillation (one patient at 1,200 mg/m2; one patient at 1,000 mg/m2), and grade 2 nausea/vomiting leading to inability to complete a full 5-day cycle (two patients at 1,000 mg/m2). The maximum tolerated dose was 1,000 mg/m2/d. I.v. belinostat displayed linear pharmacokinetics with respect to Cmax and AUC. The intermediate elimination half-life was 0.3 to 1.3 h and was independent of dose. Histone H4 hyperacetylation was observed after each infusion and was sustained for 4 to 24 h in a dose-dependent manner. Increases in interleukin-6 levels were detected following belinostat treatment. Stable disease was observed in a total of 18 (39%) patients, including 15 treated for ≥4 cycles, and this was associated with caspase-dependent cleavage of cytokeratin-18. Of the 24 patients treated at the maximum tolerated dose (1,000 mg/m2/d), 50% achieved stable disease. Conclusions: I.v. belinostat is well tolerated, exhibits dose-dependent pharmacodynamic effects, and has promising antitumor activity.


Oncogene | 2012

Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling

Constanze Zeller; Wei Dai; Nicola Steele; Afshan Siddiq; Andrew Walley; Charlotte Wilhelm-Benartzi; S. Rizzo; A. van der Zee; Jane A. Plumb; Robert Brown

Multiple DNA methylation changes in the cancer methylome are associated with the acquisition of drug resistance; however it remains uncertain how many represent critical DNA methylation drivers of chemoresistance. Using isogenic, cisplatin-sensitive/resistant ovarian cancer cell lines and inducing resensitizaton with demethylating agents, we aimed to identify consistent methylation and expression changes associated with chemoresistance. Using genome-wide DNA methylation profiling across 27 578 CpG sites, we identified loci at 4092 genes becoming hypermethylated in chemoresistant A2780/cp70 compared with the parental-sensitive A2780 cell line. Hypermethylation at gene promoter regions is often associated with transcriptional silencing; however, expression of only 245 of these hypermethylated genes becomes downregulated in A2780/cp70 as measured by microarray expression profiling. Treatment of A2780/cp70 with the demethylating agent 2-deoxy-5′-azacytidine induces resensitization to cisplatin and re-expression of 41 of the downregulated genes. A total of 13/41 genes were consistently hypermethylated in further independent cisplatin-resistant A2780 cell derivatives. CpG sites at 9 of the 13 genes (ARHGDIB, ARMCX2, COL1A, FLNA, FLNC, MEST, MLH1, NTS and PSMB9) acquired methylation in ovarian tumours at relapse following chemotherapy or chemoresistant cell lines derived at the time of patient relapse. Furthermore, 5/13 genes (ARMCX2, COL1A1, MDK, MEST and MLH1) acquired methylation in drug-resistant ovarian cancer-sustaining (side population) cells. MLH1 has a direct role in conferring cisplatin sensitivity when reintroduced into cells in vitro. This combined genomics approach has identified further potential key drivers of chemoresistance whose expression is silenced by DNA methylation that should be further evaluated as clinical biomarkers of drug resistance.


Oncogene | 2001

Telomerase-specific suicide gene therapy vectors expressing bacterial nitroreductase sensitize human cancer cells to the pro-drug CB1954.

Jane A. Plumb; Alan Bilsland; R. Kakani; Jiangqin Zhao; Rosalind Glasspool; R.J. Knox; T.R.J. Evans; Keith Wn

Telomerase activation is considered to be a critical step in cancer progression due to its role in cellular immortalization. The prevalence of telomerase expression in human cancers makes it an attractive candidate for new mechanism-based targets for cancer therapy. The selective killing of cancer cells can be achieved by gene-directed enzyme pro-drug therapy (GDEPT). In this study we have tested the feasibility of using the transcriptional regulatory sequences from the hTERT and hTR genes to regulate expression of the bacterial nitroreductase enzyme in combination with the pro-drug CB1954 in a suicide gene therapy strategy. hTERT and hTR promoter activity was compared in a panel of 10 cell lines and showed a wide distribution in activity; low activity was observed in normal cells and telomerase-negative immortal ALT cell lines, with up to 300-fold higher activity observed in telomerase positive cancer lines. Placing the nitroreductase gene under the control of the telomerase gene promoters sensitized cancer cells in tissue culture to the pro-drug CB1954 and promoter activity was predictive of sensitization to the pro-drug (2–20-fold sensitization), with cell death restricted to lines exhibiting high levels of promoter activity. The in vivo relevance of these data was tested using two xenograft models (C33a and GLC4 cells). Significant tumour reduction was seen with both telomerase promoters and the promoter-specific patterns of sensitization observed in tissue culture were retained in xenograft models. Thus, telomerase-specific suicide gene therapy vectors expressing bacterial nitroreductase sensitize human cancer cells to the pro-drug CB1954.


British Journal of Cancer | 2009

Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression and drug sensitivity in vivo

Nicola Steele; Paul W. Finn; Robert Brown; Jane A. Plumb

Histone deacetylation and DNA methylation have a central role in the control of gene expression in tumours, including transcriptional repression of tumour suppressor genes and genes involved in sensitivity to chemotherapy. Treatment of cisplatin-resistant cell lines with an inhibitor of DNA methyltransferases, 2-deoxy-5′azacytidine (decitabine), results in partial reversal of DNA methylation, re-expression of epigenetically silenced genes including hMLH1 and sensitisation to cisplatin both in vitro and in vivo. We have investigated whether the combination of decitabine and a clinically relevant inhibitor of histone deacetylase activity (belinostat, PXD101) can further increase the re-expression of genes epigenetically silenced by DNA methylation and enhance chemo-sensitisation in vivo at well-tolerated doses. The cisplatin-resistant human ovarian cell line A2780/cp70 has the hMLH1 gene methylated and is resistant to cisplatin both in vitro and when grown as a xenograft in mice. Treatment of A2780/cp70 with decitabine and belinostat results in a marked increase in expression of epigenetically silenced MLH1 and MAGE-A1 both in vitro and in vivo when compared with decitabine alone. The combination greatly enhanced the effects of decitabine alone on the cisplatin sensitivity of xenografts. As the dose of decitabine that can be given to patients and hence the maximum pharmacodynamic effect as a demethylating agent is limited by toxicity and eventual re-methylation of genes, we suggest that the combination of decitabine and belinostat could have a role in the efficacy of chemotherapy in tumours that have acquired drug resistance due to DNA methylation and gene silencing.


Oncogene | 2003

Selective ablation of human cancer cells by telomerase-specific adenoviral suicide gene therapy vectors expressing bacterial nitroreductase.

Alan Bilsland; C.J. Anderson; Aileen J. Fletcher-Monaghan; F. McGregor; T.R.J. Evans; I. Ganly; R.J. Knox; Jane A. Plumb; Keith Wn

Reactivation of telomerase maintains telomere function and is considered critical to immortalization in most human cancer cells. Elevation of telomerase expression in cancer cells is highly specific: transcription of both RNA (hTR) and protein (hTERT) components is strongly upregulated in cancer cells relative to normal cells. Therefore, telomerase promoters may be useful in cancer gene therapy by selectively expressing suicide genes in cancer cells and not normal cells. One example of suicide gene therapy is the bacterial nitroreductase (NTR) gene, which bioactivates the prodrug CB1954 into an active cytotoxic alkylating agent. We describe construction of adenovirus vectors harbouring the bacterial NTR gene under control of the hTR or hTERT promoters. Western blot analysis of NTR expression in normal and cancer cells infected with adenoviral vectors showed cancer cell-specific nitroreductase expression. Infection with adenoviral telomerase–NTR constructs in a panel of seven cancer cell lines resulted in up to 18-fold sensitization to the prodrug CB1954, an effect that was retained in two drug-resistant ovarian lines. Importantly, no sensitization was observed with either promoter in any of the four normal cell strains. Finally, an efficacious effect was observed in cervical and ovarian xenograft models following single intratumoural injection with low doses of vector, followed by injection with CB1954.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A functional genetic screen identifies retinoic acid signaling as a target of histone deacetylase inhibitors

Mirjam T. Epping; Liming Wang; Jane A. Plumb; Michele Lieb; Hinrich Gronemeyer; Robert Brown; René Bernards

Understanding the pathways that are targeted by cancer drugs is instrumental for their rational use in a clinical setting. Inhibitors of histone deacetylases (HDACI) selectively inhibit proliferation of malignant cells and are used for the treatment of cancer, but their cancer selectivity is understood poorly. We conducted a functional genetic screen to address the mechanism(s) of action of HDACI. We report here that ectopic expression of two genes that act on retinoic acid (RA) signaling can cause resistance to growth arrest and apoptosis induced by HDACI of different chemical classes: the retinoic acid receptor α (RARα) and preferentially expressed antigen of melanoma (PRAME), a repressor of RA signaling. Treatment of cells with HDACI induced RA signaling, which was inhibited by RARα or PRAME expression. Conversely, RAR-deficient cells and PRAME-knockdown cells show enhanced sensitivity to HDACI in vitro and in mouse xenograft models. Finally, a combination of RA and HDACI acted synergistically to activate RA signaling and inhibit tumor growth. These experiments identify the RA pathway as a rate-limiting target of HDACI and suggest strategies to enhance the therapeutic efficacy of HDACI.


Biochemical Pharmacology | 1990

The activity of verapamil as a resistance modifier in vitro in drug resistant human tumour cell lines is not stereospecific

Jane A. Plumb; Robert Milroyf; Stanley B. Kaye

The L-isomer of verapamil is a more potent calcium antagonist than the D-isomer. We have examined the two stereoisomers of verapamil for their ability to increase the chemosensitivity in vitro of three drug resistant cell lines (2780AD, MCF7/AdrR and H69LX10). Neither racemic verapamil nor its individual isomers had any effect on the drug sensitivity of the parent cell lines (A2780, MCF7 and NCI-H69). Verapamil (6.6 microM) increased the sensitivity of all three resistant cell lines to Adriamycin by 10-12-fold. This activity was concentration dependent and was maximal at 6-7 microM. The increase in sensitivity was only 2-3-fold at 2 microM, the maximum plasma concentration achieved in patients. Both the D- and L-isomers of verapamil alone at 6.6 microM were as effective as racemic verapamil and the D-isomer demonstrated the same concentration dependent activity as racemic verapamil. The total cellular Adriamycin concentration of both 2780AD and MCF7/AdrR was increased by two-fold in the presence of verapamil (6.6 microM). Both D- and L-verapamil alone increased the amount of drug accumulated to the same extent as racemic verapamil. These results indicate that the resistance modification activity of verapamil is not stereospecific. Use of D-verapamil alone in patients could increase the maximum tolerated plasma concentrations of verapamil and thus D-verapamil may be a more effective resistance modifier in vivo than racemic verapamil.


British Journal of Cancer | 1993

Effect of polyunsaturated fatty acids on the drug sensitivity of human tumour cell lines resistant to either cisplatin or doxorubicin.

Jane A. Plumb; Wei Luo; D. J. Kerr

Growth of cells in vitro in the presence of fatty acids can alter the membrane composition and hence fluidity and permeability. Exposure of both doxorubicin (2780AD) and cisplatin (2780CP) resistant human ovarian cell lines to non-toxic concentrations of polyunsaturated fatty acids (gamma-linolenic acid and eicosapentaenoic acid) either before or during exposure to the cytotoxic drug did not modulate drug sensitivity. However, the fatty acids were toxic in their own right. Whilst the ovarian cell lines 2780AD and 2780CP showed a small degree of cross resistance to both fatty acids the doxorubicin resistant breast cell line MCF7/Adr was slightly more sensitive than MCF7. When the interactions between the polyunsaturated fatty acids and cytotoxic drugs were analysed by the isobologram method the toxicities were shown to be additive. The combination of polyunsaturated fatty acids and cytotoxic drugs may have clinical potential provided that the normal tissue toxicities of the two treatments are not additive.


Metallomics | 2012

Cucurbit[7]uril encapsulated cisplatin overcomes cisplatin resistance via a pharmacokinetic effect

Jane A. Plumb; Balaji Venugopal; Rabbab Oun; Natividad Gomez-Roman; Yoshiyuki Kawazoe; Natarajan Sathiyamoorthy Venkataramanan; Nial J. Wheate

The cucurbit[n]uril (CB[n]) family of macrocycles has been shown to have potential in drug delivery where they are able to provide physical and chemical stability to drugs, improve drug solubility, control drug release and mask the taste of drugs. Cisplatin is a small molecule platinum-based anticancer drug that has severe dose-limiting side-effects. Cisplatin forms a host-guest complex with cucurbit[7]uril (cisplatin@CB[7]) with the platinum atom and both chlorido ligands located inside the macrocycle, with binding stabilised by four hydrogen bonds (2.15-2.44 Å). Whilst CB[7] has no effect on the in vitro cytotoxicity of cisplatin in the human ovarian carcinoma cell line A2780 and its cisplatin-resistant sub-lines A2780/cp70 and MCP1, there is a significant effect on in vivo cytotoxicity using human tumour xenografts. Cisplatin@CB[7] is just as effective on A2780 tumours compared with free cisplatin, and in the cisplatin-resistant A2780/cp70 tumours cisplatin@CB[7] markedly slows tumour growth. The ability of cisplatin@CB[7] to overcome resistance in vivo appears to be a pharmacokinetic effect. Whilst the peak plasma level and tissue distribution are the same for cisplatin@CB[7] and free cisplatin, the total concentration of circulating cisplatin@CB[7] over a period of 24 hours is significantly higher than for free cisplatin when administered at the equivalent dose. The results provide the first example of overcoming drug resistance via a purely pharmacokinetic effect rather than drug design or better tumour targeting, and demonstrate that in vitro assays are no longer as important in screening advanced systems of drug delivery.

Collaboration


Dive into the Jane A. Plumb's collaboration.

Top Co-Authors

Avatar

Robert Brown

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stanley B. Kaye

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Paul Workman

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicola Steele

Beatson West of Scotland Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Paul W. Finn

University of Buckingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge