Natividad Gomez-Roman
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Natividad Gomez-Roman.
Nature Cell Biology | 2005
Carla Grandori; Natividad Gomez-Roman; Zoë A. Felton-Edkins; Celine Ngouenet; Denise A. Galloway; Robert N. Eisenman; Robert J. White
c-Myc coordinates cell growth and division through a transcriptional programme that involves both RNA polymerase (Pol) II- and Pol III-transcribed genes. Here, we demonstrate that human c-Myc also directly enhances Pol I transcription of ribosomal RNA (rRNA) genes. rRNA synthesis and accumulation occurs rapidly following activation of a conditional MYC-ER allele (coding for a Myc–oestrogen-receptor fusion protein), is resistant to inhibition of Pol II transcription and is markedly reduced by c-MYC RNA interference. Furthermore, by using combined immunofluorescence and rRNA-FISH, we have detected endogenous c-Myc in nucleoli at sites of active ribosomal DNA (rDNA) transcription. Our data also show that c-Myc binds to specific consensus elements located in human rDNA and associates with the Pol I-specific factor SL1. The presence of c-Myc at specific sites on rDNA coincides with the recruitment of SL1 to the rDNA promoter and with increased histone acetylation. We propose that stimulation of rRNA synthesis by c-Myc is a key pathway driving cell growth and tumorigenesis.
Nature | 2003
Natividad Gomez-Roman; Carla Grandori; Robert N. Eisenman; Robert J. White
The proto-oncogene product c-Myc has a direct role in both metazoan cell growth and division. RNA polymerase III (pol III) is involved in the generation of transfer RNA and 5S ribosomal RNA, and these molecules must be produced in bulk to meet the need for protein synthesis in growing cells. We demonstrate here that c-Myc binds to TFIIIB, a pol III-specific general transcription factor, and directly activates pol III transcription. Chromatin immunoprecipitation reveals that endogenous c-Myc is present at tRNA and 5S rRNA genes in cultured mammalian cells. These results suggest that activation of pol III may have a role in the ability of c-Myc to stimulate cell growth.
Cell Cycle | 2003
Zoë A. Felton-Edkins; Niall S. Kenneth; Timothy R. P. Brown; Nicole L. Daly; Natividad Gomez-Roman; Carla Grandori; Robert N. Eisenman; Robert J. White
The synthesis of tRNA and 5S rRNA by RNA polymerase (pol) III is cell cycle regulated in higher organisms. Overexpression of pol III products is a general feature of transformed cells. These observations may be explained by the fact that a pol III-specific transcription factor, TFIIIB, is strongly regulated by the tumour suppressors RB and p53, as well as the proto-oncogene product c-Myc. RB and p53 repress TFIIIB, but this restraint can be lost in tumours through a variety of mechanisms. In contrast, c-Myc binds and activates TFIIIB, causing potent induction of pol III transcription. Using chromatin immunoprecipitation and RNA interference, we show that c-Myc interacts with tRNA and 5S rRNA genes in transformed cervical cells, stimulating their expression. Availability of pol III products may be an important determinant of a cells capacity to grow. The ability to regulate pol III output may therefore be integral to the growth control functions of RB, p53 and c-Myc.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Niall S. Kenneth; Ben A. Ramsbottom; Natividad Gomez-Roman; Lynne Marshall; Philip A. Cole; Robert J. White
Activation of RNA polymerase (pol) II transcription by c-Myc generally involves recruitment of histone acetyltransferases and acetylation of histones H3 and H4. Here, we describe the mechanism used by c-Myc to activate pol III transcription of tRNA and 5S rRNA genes. Within 2 h of its induction, c-Myc appears at these genes along with the histone acetyltransferase GCN5 and the cofactor TRRAP. At the same time, occupancy of the pol III-specific factor TFIIIB increases and histone H3 becomes hyperacetylated, but increased histone H4 acetylation is not detected at these genes. The rapid acetylation of histone H3 and promoter assembly of TFIIIB, c-Myc, GCN5, and TRRAP are followed by recruitment of pol III and transcriptional induction. The selective acetylation of histone H3 distinguishes pol III activation by c-Myc from mechanisms observed in other systems.
Metallomics | 2012
Jane A. Plumb; Balaji Venugopal; Rabbab Oun; Natividad Gomez-Roman; Yoshiyuki Kawazoe; Natarajan Sathiyamoorthy Venkataramanan; Nial J. Wheate
The cucurbit[n]uril (CB[n]) family of macrocycles has been shown to have potential in drug delivery where they are able to provide physical and chemical stability to drugs, improve drug solubility, control drug release and mask the taste of drugs. Cisplatin is a small molecule platinum-based anticancer drug that has severe dose-limiting side-effects. Cisplatin forms a host-guest complex with cucurbit[7]uril (cisplatin@CB[7]) with the platinum atom and both chlorido ligands located inside the macrocycle, with binding stabilised by four hydrogen bonds (2.15-2.44 Å). Whilst CB[7] has no effect on the in vitro cytotoxicity of cisplatin in the human ovarian carcinoma cell line A2780 and its cisplatin-resistant sub-lines A2780/cp70 and MCP1, there is a significant effect on in vivo cytotoxicity using human tumour xenografts. Cisplatin@CB[7] is just as effective on A2780 tumours compared with free cisplatin, and in the cisplatin-resistant A2780/cp70 tumours cisplatin@CB[7] markedly slows tumour growth. The ability of cisplatin@CB[7] to overcome resistance in vivo appears to be a pharmacokinetic effect. Whilst the peak plasma level and tissue distribution are the same for cisplatin@CB[7] and free cisplatin, the total concentration of circulating cisplatin@CB[7] over a period of 24 hours is significantly higher than for free cisplatin when administered at the equivalent dose. The results provide the first example of overcoming drug resistance via a purely pharmacokinetic effect rather than drug design or better tumour targeting, and demonstrate that in vitro assays are no longer as important in screening advanced systems of drug delivery.
Molecular Oncology | 2015
Ross Carruthers; Shafiq U. Ahmed; Karen Strathdee; Natividad Gomez-Roman; Evelyn Amoah-Buahin; Colin Watts; Anthony J. Chalmers
Resistance to radiotherapy in glioblastoma (GBM) is an important clinical problem and several authors have attributed this to a subpopulation of GBM cancer stem cells (CSCs) which may be responsible for tumour recurrence following treatment. It is hypothesised that GBM CSCs exhibit upregulated DNA damage responses and are resistant to radiation but the current literature is conflicting. We investigated radioresistance of primary GBM cells grown in stem cell conditions (CSC) compared to paired differentiated tumour cell populations and explored the radiosensitising effects of the ATM inhibitor KU‐55933.
PLOS ONE | 2009
Alan Bilsland; Stacey F. Hoare; Katrina Stevenson; Jane A. Plumb; Natividad Gomez-Roman; Claire J. Cairney; Sharon Burns; Kyle Lafferty-Whyte; Jon Roffey; Tim Hammonds; W. Nicol Keith
Background Telomerase controls telomere homeostasis and cell immortality and is a promising anti-cancer target, but few small molecule telomerase inhibitors have been developed. Reactivated transcription of the catalytic subunit hTERT in cancer cells controls telomerase expression. Better understanding of upstream pathways is critical for effective anti-telomerase therapeutics and may reveal new targets to inhibit hTERT expression. Methodology/Principal Findings In a focused promoter screen, several GSK3 inhibitors suppressed hTERT reporter activity. GSK3 inhibition using 6-bromoindirubin-3′-oxime suppressed hTERT expression, telomerase activity and telomere length in several cancer cell lines and growth and hTERT expression in ovarian cancer xenografts. Microarray analysis, network modelling and oligonucleotide binding assays suggested that multiple transcription factors were affected. Extensive remodelling involving Sp1, STAT3, c-Myc, NFκB, and p53 occurred at the endogenous hTERT promoter. RNAi screening of the hTERT promoter revealed multiple kinase genes which affect the hTERT promoter, potentially acting through these factors. Prolonged inhibitor treatments caused dynamic expression both of hTERT and of c-Jun, p53, STAT3, AR and c-Myc. Conclusions/Significance Our results indicate that GSK3 activates hTERT expression in cancer cells and contributes to telomere length homeostasis. GSK3 inhibition is a clinical strategy for several chronic diseases. These results imply that it may also be useful in cancer therapy. However, the complex network effects we show here have implications for either setting.
Oncogene | 2005
Nicole L. Daly; Demetrios A. Arvanitis; Jennifer A. Fairley; Natividad Gomez-Roman; Jennifer P. Morton; Sheila V. Graham; Demetrios A. Spandidos; Robert J. White
RNA polymerase (pol) III transcription is a major determinant of biosynthetic capacity, providing essential products such as tRNA and 5S rRNA. It is controlled directly by the tumour suppressors RB and p53. High-risk types of human papillomavirus (HPV), such as HPV16, express the oncoproteins E6 and E7 that can inactivate p53 and RB, respectively. Accordingly, both E6 and E7 stimulate pol III transcription in cultured cells. HPV16-positive cervical biopsies express elevated levels of tRNA and 5S rRNA when compared to biopsies that test negative for HPV or are infected with the lower risk HPV11. Integration of viral DNA into the host cell genome stimulates expression of E6 and E7 and correlates with induction of tRNA and 5S rRNA. Expression of mRNA encoding the pol III-specific transcription factor Brf1 also correlates with the presence of integrated HPV16. Brf1 levels are limiting for tRNA and 5S rRNA synthesis in cervical cells. Furthermore, pol III-transcribed genes that do not use Brf1 are not induced in HPV16-positive biopsies. Three complementary mechanisms may therefore allow high-risk HPV to stimulate production of tRNA and 5S rRNA: E6-mediated removal of p53; E7-mediated neutralization of RB; and induction of Brf1. The resultant increase in biosynthetic capacity may contribute to deregulated cell growth.
Stem Cell Research | 2014
Mariella Mannino; Natividad Gomez-Roman; Helfrid Hochegger; Anthony J. Chalmers
Glioma stem-cell-like cells are considered to be responsible for treatment resistance and tumour recurrence following chemo-radiation in glioblastoma patients, but specific targets by which to kill the cancer stem cell population remain elusive. A characteristic feature of stem cells is their ability to undergo both symmetric and asymmetric cell divisions. In this study we have analysed specific features of glioma stem cell mitosis. We found that glioma stem cells appear to be highly prone to undergo aberrant cell division and polyploidization. Moreover, we discovered a pronounced change in the dynamic of mitotic centrosome maturation in these cells. Accordingly, glioma stem cell survival appeared to be strongly dependent on Aurora A activity. Unlike differentiated cells, glioma stem cells responded to moderate Aurora A inhibition with spindle defects, polyploidization and a dramatic increase in cellular senescence, and were selectively sensitive to Aurora A and Plk1 inhibitor treatment. Our study proposes inhibition of centrosomal kinases as a novel strategy to selectively target glioma stem cells.
Neuro-oncology | 2016
Natividad Gomez-Roman; Katrina Stevenson; Lesley Gilmour; Graham Hamilton; Anthony J. Chalmers
Abstract Background. Glioblastoma (GBM) is the most common primary brain tumor, with dismal prognosis. The failure of drug–radiation combinations with promising preclinical data to translate into effective clinical treatments may relate to the use of simplified 2-dimensional in vitro GBM cultures. Methods. We developed a customized 3D GBM culture system based on a polystyrene scaffold (Alvetex) that recapitulates key histological features of GBM and compared it with conventional 2D cultures with respect to their response to radiation and to molecular targeted agents for which clinical data are available. Results. In 3 patient-derived GBM lines, no difference in radiation sensitivity was observed between 2D and 3D cultures, as measured by clonogenic survival. Three different molecular targeted agents, for which robust clinical data are available were evaluated in 2D and 3D conditions: (i) temozolomide, which improves overall survival and is standard of care for GBM, exhibited statistically significant effects on clonogenic survival in both patient-derived cell lines when evaluated in the 3D model compared with only one cell line in 2D cells; (ii) bevacizumab, which has been shown to increase progression-free survival when added to standard chemoradiation in phase III clinical trials, exhibited marked radiosensitizing activity in our 3D model but had no effect on 2D cells; and (iii) erlotinib, which had no efficacy in clinical trials, displayed no activity in our 3D GBM model, but radiosensitized 2D cells. Conclusions. Our 3D model reliably predicted clinical efficacy, strongly supporting its clinical relevance and potential value in preclinical evaluation of drug–radiation combinations for GBM.