Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jane A. Thanassi is active.

Publication


Featured researches published by Jane A. Thanassi.


Antimicrobial Agents and Chemotherapy | 2011

In Vitro and In Vivo Profiles of ACH-702, an Isothiazoloquinolone, against Bacterial Pathogens

Michael J. Pucci; Steven D. Podos; Jane A. Thanassi; Melissa Leggio; Barton James Bradbury; Milind Deshpande

ABSTRACT ACH-702, a novel isothiazoloquinolone (ITQ), was assessed for antibacterial activity against a panel of Gram-positive and Gram-negative clinical isolates and found to possess broad-spectrum activity, especially against antibiotic-resistant Gram-positive strains, including methicillin-resistant Staphylococcus aureus (MRSA). For Gram-negative bacteria, ACH-702 showed exceptional potency against Haemophilus influenzae, Moraxella catarrhalis, and a Neisseria sp. but was less active against members of the Enterobacteriaceae. Good antibacterial activity was also evident against several anaerobes as well as Legionella pneumophila and Mycoplasma pneumoniae. Excellent bactericidal activity was observed for ACH-702 against several bacterial pathogens in time-kill assays, and postantibiotic effects (PAEs) of >1 h were evident with both laboratory and clinical strains of staphylococci at 10× MIC and similar in most cases to those observed for moxifloxacin at the same MIC multiple. In vivo efficacy was demonstrated against S. aureus with murine sepsis and thigh infection models, with decreases in the number of CFU/thigh equal to or greater than those observed after vancomycin treatment. Macromolecular synthesis assays showed specific dose-dependent inhibition of DNA replication in staphylococci, and biochemical analyses indicated potent dual inhibition of two essential DNA replication enzymes: DNA gyrase and topoisomerase IV. Additional biological data in support of an effective dual targeting mechanism of action include the following: low MIC values (≤0.25 μg/ml) against staphylococcal strains with single mutations in both gyrA and grlA (parC), retention of good antibacterial activity (MICs of ≤0.5 μg/ml) against staphylococcal strains with two mutations in both gyrA and grlA, and low frequencies for the selection of higher-level resistance (<10−10). These promising initial data support further study of isothiazoloquinolones as potential clinical candidates.


Molecules | 2011

Schiff Bases of Indoline-2,3-dione: Potential Novel Inhibitors of Mycobacterium Tuberculosis (Mtb) DNA Gyrase †

Tarek Aboul-Fadl; Hatem A. Abdel-Aziz; Mohammed K. Abdel-Hamid; Tilal Elsaman; Jane A. Thanassi; Michael J. Pucci

In the present study a series of Schiff bases of indoline-2,3-dione were synthesized and investigated for their Mtb gyrase inhibitory activity. Promising inhibitory activity was demonstrated with some of these derivatives, which exhibited IC50 values ranging from 50–157 μM. The orientation and the ligand-receptor interactions of such molecules within the Mtb DNA gyrase A subunit active site were investigated applying a multi-step docking protocol using Molecular Operating Environment (MOE) and Autodock4 docking software. The results revealed the importance of the isatin moiety and the connecting side chain for strong interactions with the enzyme active site. Among the tested compounds the terminal aromatic ring benzofuran showed the best activity. Promising new leads for developing a novel class of Mtb gyrase inhibitors were obtained from Schiff bases of indoline-2,3-dione.


Haematologica | 2017

Small-molecule Factor D inhibitors selectively block the alternative pathway of complement in paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome

Xuan Yuan; Eleni Gavriilaki; Jane A. Thanassi; Guangwei Yang; Andrea C. Baines; Steven D. Podos; Yongqing Huang; Mingjun Huang; Robert A. Brodsky

Paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome are diseases of excess activation of the alternative pathway of complement that are treated with eculizumab, a humanized monoclonal antibody against the terminal complement component C5. Eculizumab must be administered intravenously, and moreover some patients with paroxysmal nocturnal hemoglobinuria on eculizumab have symptomatic extravascular hemolysis, indicating an unmet need for additional therapeutic approaches. We report the activity of two novel small-molecule inhibitors of the alternative pathway component Factor D using in vitro correlates of both paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Both compounds bind human Factor D with high affinity and effectively inhibit its proteolytic activity against purified Factor B in complex with C3b. When tested using the traditional Ham test with cells from paroxysmal nocturnal hemoglobinuria patients, the Factor D inhibitors significantly reduced complement-mediated hemolysis at concentrations as low as 0.01 μM. Additionally the compound ACH-4471 significantly decreased C3 fragment deposition on paroxysmal nocturnal hemoglobinuria erythrocytes, indicating a reduced potential relative to eculizumab for extravascular hemolysis. Using the recently described modified Ham test with serum from patients with atypical hemolytic uremic syndrome, the compounds reduced the alternative pathway-mediated killing of PIGA-null reagent cells, thus establishing their potential utility for this disease of alternative pathway of complement dysregulation and validating the modified Ham test as a system for pre-clinical drug development for atypical hemolytic uremic syndrome. Finally, ACH-4471 blocked alternative pathway activity when administered orally to cynomolgus monkeys. In conclusion, the small-molecule Factor D inhibitors show potential as oral therapeutics for human diseases driven by the alternative pathway of complement, including paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome.


Journal of Medicinal Chemistry | 2011

Selenophene-containing inhibitors of type IIA bacterial topoisomerases.

Jason Allan Wiles; Avinash Phadke; Barton James Bradbury; Michael J. Pucci; Jane A. Thanassi; Milind Deshpande

We investigated compounds related to the previously reported antistaphyloccocal agent AVE6971 in an effort to attenuate inhibition of hERG potassium channel current that has been noted for this and related antibacterial drug classes. While most modifications of the original thiophene group compromised antibacterial activity, one selenophene analogue displayed (i) improved activity against the primary target enzyme DNA gyrase, (ii) similar activities against a panel of MRSA clinical isolates, and (iii) reduced hERG channel inhibition.


Antimicrobial Agents and Chemotherapy | 2010

In vitro antituberculosis activities of ACH-702, a novel isothiazoloquinolone, against quinolone-susceptible and quinolone-resistant isolates.

Michael J. Pucci; Maria Ackerman; Jane A. Thanassi; Carolyn M. Shoen; Michael H. Cynamon

ABSTRACT ACH-702 is a new isothiazoloquinolone with potent in vitro and in vivo activities against important bacterial pathogens, including Staphylococcus aureus. In this study, ACH-702 was found to have promising in vitro antibacterial activity against Mycobacterium tuberculosis, with MICs of ≤1 μg/ml, comparable to that of the fluoroquinolone moxifloxacin for quinolone-susceptible isolates but superior to that for quinolone-resistant isolates. Biochemical assays involving M. tuberculosis gyrase enzymes indicated that ACH-702 had significantly improved inhibitory activity compared with fluoroquinolones.


Antimicrobial Agents and Chemotherapy | 2007

In Vitro and In Vivo Antibacterial Activities of Heteroaryl Isothiazolones against Resistant Gram-Positive Pathogens

Michael J. Pucci; Jijun Cheng; Steven D. Podos; Christy L. Thoma; Jane A. Thanassi; Douglas D. Buechter; Gohar Mushtaq; Gerald A. Vigliotti; Barton James Bradbury; Milind Deshpande

ABSTRACT The activities of several tricyclic heteroaryl isothiazolones (HITZs) against an assortment of gram-positive and gram-negative clinical isolates were assessed. These compounds target bacterial DNA replication and were found to possess broad-spectrum activities especially against gram-positive strains, including antibiotic-resistant staphylococci and streptococci. These included methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-nonsusceptible staphylococci, and quinolone-resistant strains. The HITZs were more active than the comparator antimicrobials in most cases. For gram-negative bacteria, the tested compounds were less active against members of the family Enterobacteriaceae but showed exceptional potencies against Haemophilus influenzae, Moraxella catarrhalis, and Neisseria spp. Good activity against several anaerobes, as well as Legionella pneumophila and Mycoplasma pneumoniae, was also observed. Excellent bactericidal activity against staphylococci was observed in time-kill assays, with an approximately 3-log drop in the numbers of CFU/ml occurring after 4 h of exposure to compound. Postantibiotic effects (PAEs) of 2.0 and 1.7 h for methicillin-susceptible S. aureus and MRSA strains, respectively, were observed, and these were similar to those seen with moxifloxacin at 10× MIC. In vivo efficacy was demonstrated in murine infections by using sepsis and thigh infection models. The 50% protective doses were ≤1 mg/kg of body weight against S. aureus in the sepsis model, while decreases in the numbers of CFU per thigh equal to or greater than those detected in animals treated with a standard dose of vancomycin were seen in the animals with thigh infections. Pharmacokinetic analyses of treated mice indicated exposures similar to those to ciprofloxacin at equivalent dose levels. These promising initial data suggest further study on the use of the HITZs as antibacterial agents.


Antimicrobial Agents and Chemotherapy | 2007

Dual Targeting of DNA Gyrase and Topoisomerase IV: Target Interactions of Heteroaryl Isothiazolones in Staphylococcus aureus

Jijun Cheng; Jane A. Thanassi; Christy L. Thoma; Barton James Bradbury; Milind Deshpande; Michael J. Pucci

ABSTRACT Heteroaryl isothiazolones (HITZs) are antibacterial agents that display excellent in vitro activity against Staphylococcus aureus. We recently identified a series of these compounds that show potent bactericidal activities against methicillin-resistant Staphylococcus aureus (MRSA). We report here the results of in vitro resistance studies that reveal potential underlying mechanisms of action. HITZs selected gyrA mutations exclusively in first-step mutants of wild-type S. aureus, indicating that in contrast to the case with most quinolones, DNA gyrase is the primary target. The compounds displayed low mutation frequencies (10−9 to 10−10) at concentrations close to the MICs and maintained low MICs (≤0.016 μg/ml) against mutants with single mutations in either gyrA or grlA (parC). These data suggested that HITZs possess significant inhibitory activities against target enzymes, DNA gyrase and topoisomerase IV. This dual-target inhibition was supported by low 50% inhibitory concentrations against topoisomerase IV as measured in a decatenation activity assay and against DNA gyrase as measured in a supercoiling activity assay. Good antibacterial activities (≤1 μg/ml) against staphylococcal gyrA grlA double mutants, as well as low frequencies (10−9 to 10−10) of selection of still higher-level mutants, also suggested that HITZs remained active against mutant enzymes. We further demonstrated that HITZs exhibit good inhibition of both S. aureus mutant enzymes and thus continue to possess a novel dual-targeting mode of action against these mutant strains. In stepwise acquisition of mutations, HITZs selected quinolone resistance determining region mutations gyrA(Ser84Leu), grlA(Ser80Phe), grlA(Ala116Val), and gyrA(Glu88Lys) sequentially, suggesting that the corresponding amino acids are key amino acids involved in the binding of HITZs to topoisomerases. The overall profile of these compounds suggests the potential utility of HITZs in combating infections caused by S. aureus, including multidrug-resistant MRSA.


Antimicrobial Agents and Chemotherapy | 2012

Bactericidal Activity of ACH-702 against Nondividing and Biofilm Staphylococci

Steven D. Podos; Jane A. Thanassi; Melissa Leggio; Michael J. Pucci

ABSTRACT Many bacterial infections involve slow or nondividing bacterial growth states and localized high cell densities. Antibiotics with demonstrated bactericidal activity rarely remain bactericidal at therapeutic concentrations under these conditions. The isothiazoloquinolone (ITQ) ACH-702 is a potent, bactericidal compound with activity against many antibiotic-resistant pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). We evaluated its bactericidal activity under conditions where bacterial cells were not dividing and/or had slowed their growth. Against S. aureus cultures in stationary phase, ACH-702 showed concentration-dependent bactericidal activity and achieved a 3-log-unit reduction in viable cell counts within 6 h of treatment at ≥16× MIC values; in comparison, the bactericidal quinolone moxifloxacin and the additional comparator compounds vancomycin, linezolid, and rifampin at 16× to 32× MICs showed little or no bactericidal activity against stationary-phase cells. ACH-702 at 32× MIC retained bactericidal activity against stationary-phase S. aureus across a range of inoculum densities. ACH-702 did not kill cold-arrested cells yet remained bactericidal against cells arrested by protein synthesis inhibitors, suggesting that its bactericidal activity against nondividing cells requires active metabolism but not de novo protein synthesis. ACH-702 also showed a degree of bactericidal activity at 16× MIC against S. epidermidis biofilm cells that was superior to that of moxifloxacin, rifampin, and vancomycin. The bactericidal activity of ACH-702 against stationary-phase staphylococci and biofilms suggests potential clinical utility in infections containing cells in these physiological states.


Antimicrobial Agents and Chemotherapy | 2012

Mechanistic Assessment of DNA Ligase as an Antibacterial Target in Staphylococcus aureus

Steven D. Podos; Jane A. Thanassi; Michael J. Pucci

ABSTRACT We report the use of a known pyridochromanone inhibitor with antibacterial activity to assess the validity of NAD+-dependent DNA ligase (LigA) as an antibacterial target in Staphylococcus aureus. Potent inhibition of purified LigA was demonstrated in a DNA ligation assay (inhibition constant [Ki] = 4.0 nM) and in a DNA-independent enzyme adenylation assay using full-length LigA (50% inhibitory concentration [IC50] = 28 nM) or its isolated adenylation domain (IC50 = 36 nM). Antistaphylococcal activity was confirmed against methicillin-susceptible and -resistant S. aureus (MSSA and MRSA) strains (MIC = 1.0 μg/ml). Analysis of spontaneous resistance potential revealed a high frequency of emergence (4 × 10−7) of high-level resistant mutants (MIC > 64) with associated ligA lesions. There were no observable effects on growth rate in these mutants. Of 22 sequenced clones, 3 encoded point substitutions within the catalytic adenylation domain and 19 in the downstream oligonucleotide-binding (OB) fold and helix-hairpin-helix (HhH) domains. In vitro characterization of the enzymatic properties of four selected mutants revealed distinct signatures underlying their resistance to inhibition. The infrequent adenylation domain mutations altered the kinetics of adenylation and probably elicited resistance directly. In contrast, the highly represented OB fold domain mutations demonstrated a generalized resistance mechanism in which covalent LigA activation proceeds normally and yet the parameters of downstream ligation steps are altered. A resulting decrease in substrate Km and a consequent increase in substrate occupancy render LigA resistant to competitive inhibition. We conclude that the observed tolerance of staphylococcal cells to such hypomorphic mutations probably invalidates LigA as a viable target for antistaphylococcal chemotherapy.


Antimicrobial Agents and Chemotherapy | 2015

Characterization of a Novel Small Molecule That Potentiates β-Lactam Activity against Gram-Positive and Gram-Negative Pathogens

Dhanalakshmi R. Nair; João M. Monteiro; Guido Memmi; Jane A. Thanassi; Michael J. Pucci; Joseph D. Schwartzman; Mariana G. Pinho; Ambrose L. Cheung

ABSTRACT In a loss-of-viability screen using small molecules against methicillin-resistant Staphylococcus aureus (MRSA) strain USA300 with a sub-MIC of a β-lactam, we found a small molecule, designated DNAC-1, which potentiated the effect of oxacillin (i.e., the MIC of oxacillin decreased from 64 to 0.25 μg/ml). Fluorescence microscopy indicated a disruption in the membrane structures within 15 min of exposure to DNAC-1 at 2× MIC. This permeabilization was accompanied by a rapid loss of membrane potential, as monitored by use of the DiOC2 (3,3′-diethyloxacarbocyanine iodide) dye. Macromolecular analysis showed the inhibition of staphylococcal cell wall synthesis by DNAC-1. Transmission electron microscopy of treated MRSA USA300 cells revealed a slightly thicker cell wall, together with mesosome-like projections into the cytosol. The exposure of USA300 cells to DNAC-1 was associated with the mislocalization of FtsZ accompanied by the localization of penicillin-binding protein 2 (PBP2) and PBP4 away from the septum, as well as mild activation of the vraRS-mediated cell wall stress response. However, DNAC-1 does not have any generalized toxicity toward mammalian host cells. DNAC-1 in combination with ceftriaxone is also effective against an assortment of Gram-negative pathogens. Using a murine subcutaneous coinjection model with 108 CFU of USA300 as a challenge inoculum, DNAC-1 alone or DNAC-1 with a sub-MIC of oxacillin resulted in a 6-log reduction in bacterial load and decreased abscess formation compared to the untreated control. We propose that DNAC-1, by exerting a bimodal effect on the cell membrane and cell wall, is a viable candidate in the development of combination therapy against many common bacterial pathogens.

Collaboration


Dive into the Jane A. Thanassi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert A. Brodsky

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuan Yuan

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge