Jane E. Adcock
John Radcliffe Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jane E. Adcock.
NeuroImage | 2003
Jane E. Adcock; Richard Geoffrey Wise; J. M. Oxbury; S. M. Oxbury; Paul M. Matthews
Defining language lateralization is important to minimize morbidity in patients treated surgically for temporal lobe epilepsy (TLE). Functional magnetic resonance imaging (fMRI) offers a promising, noninvasive, alternative strategy to the Wada test. Here we have used fMRI to study healthy controls and patients with TLE in order to (i) define language-related activation patterns and their reproducibility; (ii) compare lateralization determined by fMRI with those from of the Wada test; and (iii) contrast different methods of assessing fMRI lateralization. Twelve healthy right-handed controls and 19 right-handed preoperative patients with TLE (12 left- and seven right-TLE) were studied at 3T using fMRI and a verbal fluency paradigm. A Wada test also was performed on each of the patients. Greater activation was found in several areas in the right hemisphere for the left-TLE group relative to controls or right-TLE patients. Relative hemispheric activations calculated based on either the extent or the mean signal change gave consistent results showing a more bihemispheric language representation in the left-TLE patients. There was good agreement between the Wada and fMRI results, although the latter were more sensitive to involvement of the nondominant right hemisphere. The reproducibility of the fMRI values was lowest for the more bihemispherically represented left-TLE patients. Overall, our results further demonstrate that noninvasive fMRI measures of language-related lateralization may provide a practical and reliable alternative to invasive testing for presurgical language lateralization in patients with TLE. The high proportion (33%) of left-TLE patients showing bilateral or right hemispheric language-related lateralization suggests that there is considerable plasticity of language representation in the brains of patients with intractable TLE.
Human Brain Mapping | 2009
Natalie L. Voets; Jane E. Adcock; Richard Stacey; Yvonne Hart; Katherine Carpenter; Paul M. Matthews; Christian F. Beckmann
Understanding functional plasticity in memory networks associated with temporal lobe epilepsy (TLE) is central to predicting memory decline following surgery. However, the extent of functional reorganization within memory networks remains unclear. In this preliminary study, we used novel analysis methods assessing network‐level changes across the brain during memory task performance in patients with TLE to test the hypothesis that hippocampal functions may not readily shift between hemispheres, but instead may show altered intra‐hemispheric organization with unilateral damage. In addition, we wished to relate functional differences to structural changes along specific fibre pathways associated with memory function. Nine pre‐operative patients with intractable left TLE and 10 healthy controls underwent functional MRI during complex scene encoding. Diffusion tensor imaging was additionally performed in the same patients. In our study, we found no evidence of inter‐hemispheric shifts in memory‐related activity in TLE using standard general linear model analysis. However, tensor independent component analysis revealed significant reductions in functional connectivity between bilateral MTL, occipital and left orbitofrontal regions among others in left TLE. This altered orbitofrontal activity was directly related to measures of fornix tract coherence in patients (P < 0.05). Our results suggest that specific fibre pathways, potentially affected by MTL neurodegeneration, may play a central role in functional plasticity in TLE and highlight the importance of network‐based analysis approaches. Relative to standard model‐based methods, novel objective functional connectivity analyses may offer improved sensitivity to subtle changes in the distribution of memory functions relevant for surgical planning in TLE. Hum Brain Mapp, 2009.
Neurosurgery | 2003
James V. Byrne; Philip Boardman; Ioannis Ioannidis; Jane E. Adcock; Zoe Traill
OBJECTIVEWe sought to determine the incidence of seizures among patients treated with endovascular coil embolization for ruptured intracranial aneurysms because data on which to base antiepileptic drug (AED) prescriptions and advice to patients regarding driving motor vehicles and other high-risk activities are currently lacking. METHODSWe conducted a single-institute, single-operator observational study of 243 patients referred for endovascular treatment after aneurysmal subarachnoid hemorrhage. Prospective data collection was performed, and all successfully treated patients were followed. The incidence of seizures was compared with published surgical data, and logistic regression analysis of potential clinical associations was performed. Patients were followed for up to 7.7 years (mean follow-up period, 21.9 mo). RESULTSIctal seizures occurred at the time of subarachnoid hemorrhage in 26 (11%) of 243 patients and correlated with middle cerebral artery aneurysm location, loss of consciousness at ictus, and AED prescription. No patients experienced periprocedural seizures during their hospitalization. Seven of 233 successfully treated patients (3%) experienced seizures more than 30 days after treatment: late seizures occurred de novo in four patients (1.7%) and in three patients (1.4%) were caused by preexisting epilepsy. Two patients (0.85%) who had de novo seizures developed epilepsy. Late seizures correlated with a history of previous seizures, the presence of a cerebrospinal fluid shunt, and the use of AEDs. CONCLUSIONThe low incidence of seizures does not justify the use of prophylactic AED therapy after aneurysmal subarachnoid hemorrhage in patients treated solely with coil embolization, nor does it justify subsequent restrictions on the driving of motor vehicles if the patient is otherwise fit to drive.
Human Brain Mapping | 2003
Paul M. Matthews; Jane E. Adcock; Yiping Chen; Shimin Fu; Joseph T. Devlin; Matthew F. S. Rushworth; Stephen M. Smith; Christian F. Beckmann; Susan D. Iversen
Functional magnetic resonance imaging (fMRI), which allows non‐invasive mapping of human cognitive functions, has become an important tool for understanding language function. An understanding of component processes and sources of noise in the images is contributing to increased confidence in the reproductability of studies. This allows clinical applications, e.g., for pre‐surgical lateralisation of language functions in patients with temporal lobe epilepsy. fMRI is a sensitive method for mapping regions involved in language functions. We recently have applied it to study the effect of word surface form on reading with a comparison of responses to Chinese characters or alphabetical Pinyin. Interpretation of fMRI activations must be made with caution; fMRI suggests task‐associated activation, but does not independently confirm that such activity is necessary. However, complementary studies can be performed using transcranial magnetic stimulation (TMS), which can be used to interfere with brain activity in a specific region transiently for characterisation of the behavioural effects. We describe how TMS combined with fMRI has confirmed a role for the left inferior frontal cortex in semantic processing. Hum. Brain Mapping 18:239–247, 2003.
Journal of Neurology, Neurosurgery, and Psychiatry | 2017
Bethan Lang; Mateusz Makuch; Teresa Moloney; Inga M. Dettmann; S Mindorf; C Probst; W Stoecker; Camilla Buckley; Charles R. Newton; M I Leite; Paul Maddison; Lars Komorowski; Jane E. Adcock; Angela Vincent; Patrick Waters; Sarosh R. Irani
Objectives Autoantibodies against the extracellular domains of the voltage-gated potassium channel (VGKC) complex proteins, leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-2 (CASPR2), are found in patients with limbic encephalitis, faciobrachial dystonic seizures, Morvans syndrome and neuromyotonia. However, in routine testing, VGKC complex antibodies without LGI1 or CASPR2 reactivities (double-negative) are more common than LGI1 or CASPR2 specificities. Therefore, the target(s) and clinical associations of double-negative antibodies need to be determined. Methods Sera (n=1131) from several clinically defined cohorts were tested for IgG radioimmunoprecipitation of radioiodinated α-dendrotoxin (125I-αDTX)-labelled VGKC complexes from mammalian brain extracts. Positive samples were systematically tested for live hippocampal neuron reactivity, IgG precipitation of 125I-αDTX and 125I-αDTX-labelled Kv1 subunits, and by cell-based assays which expressed Kv1 subunits, LGI1 and CASPR2. Results VGKC complex antibodies were found in 162 of 1131 (14%) sera. 90 of these (56%) had antibodies targeting the extracellular domains of LGI1 or CASPR2. Of the remaining 72 double-negative sera, 10 (14%) immunoprecipitated 125I-αDTX itself, and 27 (38%) bound to solubilised co-expressed Kv1.1/1.2/1.6 subunits and/or Kv1.2 subunits alone, at levels proportionate to VGKC complex antibody levels (r=0.57, p=0.0017). The sera with LGI1 and CASPR2 antibodies immunoprecipitated neither preparation. None of the 27 Kv1-precipitating samples bound live hippocampal neurons or Kv1 extracellular domains, but 16 (59%) bound to permeabilised Kv1-expressing human embryonic kidney 293T cells. These intracellular Kv1 antibodies mainly associated with non-immune disease aetiologies, poor longitudinal clinical–serological correlations and a limited immunotherapy response. Conclusions Double-negative VGKC complex antibodies are often directed against cytosolic epitopes of Kv1 subunits and occasionally against non-mammalian αDTX. These antibodies should no longer be classified as neuronal-surface antibodies. They consequently lack pathogenic potential and do not in themselves support the use of immunotherapies.
The Journal of Neuroscience | 2014
Natalie L. Voets; Giovanna Zamboni; Mark G. Stokes; Katherine Carpenter; Richard Stacey; Jane E. Adcock
In the healthy human brain, evidence for dissociable memory networks along the anterior–posterior axis of the hippocampus suggests that this structure may not function as a unitary entity. Failure to consider these functional divisions may explain diverging results among studies of memory adaptation in disease. Using task-based and resting functional MRI, we show that chronic seizures disrupting the anterior medial temporal lobe (MTL) preserve anterior and posterior hippocampal-cortical dissociations, but alter signaling between these and other key brain regions. During performance of a memory encoding task, we found reduced neural activity in human patients with unilateral temporal lobe epilepsy relative to age-matched healthy controls, but no upregulation of fMRI signal in unaffected hippocampal subregions. Instead, patients showed aberrant resting fMRI connectivity within anterior and posterior hippocampal-cortical networks, which was associated with memory decline, distinguishing memory-intact from memory-impaired patients. Our results highlight a critical role for intact hippocampo-cortical functional communication in memory and provide evidence that chronic injury-induced functional reorganization in the diseased MTL is behavioral inefficient.
Practical Neurology | 2010
Liberty Mathew; Allister Vale; Jane E. Adcock
A 49-year-old white man returned urgently to the UK after spending 3 months in Goa. He had a several week history of vomiting, weight loss, a widespread desquamating skin rash, and symptoms and signs of a progressive painful sensorimotor neuropathy. He had a mild normocytic anaemia and lymphopenia. Nerve conduction studies revealed a severe predominantly axonal large fibre sensorimotor neuropathy, confirmed on subsequent sural nerve biopsy. Once he had left Goa most of his symptoms started to rapidly settle although the neuropathic symptoms remained severe. Arsenic poisoning was suspected. A spot urine arsenic concentration was 300 μg/l, confirming the diagnosis. He was treated with chelation therapy. Deliberate arsenic poisoning was highly likely.
Journal of Clinical Neurophysiology | 2012
Jane E. Adcock; Chrysostomos P. Panayiotopoulos
Occipital lobe epilepsies (OLEs) manifest with occipital seizures from an epileptic focus within the occipital lobes. Ictal clinical symptoms are mainly visual and oculomotor. Elementary visual hallucinations are common and characteristic. Postictal headache occurs in more than half of patients (epilepsy-migraine sequence). Electroencephalography (EEG) is of significant diagnostic value, but certain limitations should be recognized. Occipital spikes and/or occipital paroxysms either spontaneous or photically induced are the main interictal EEG abnormalities in idiopathic OLE. However, occipital epileptiform abnormalities may also occur without clinical relationship to seizures particularly in children. In cryptogenic/symptomatic OLE, unilateral posterior EEG slowing is more common than occipital spikes. In neurosurgical series of symptomatic OLE, interictal EEG abnormalities are rarely strictly occipital. The most common localization is in the posterior temporal regions and less than one-fifth show occipital spikes. In photosensitive OLE, intermittent photic stimulation elicits (1) spikes/polyspikes confined in the occipital regions or (2) generalized spikes/polyspikes with posterior emphasis. In ictal EEG, a well-localized unifocal rhythmic ictal discharge during occipital seizures is infrequent. A bioccipital field spread to the temporal regions is common. Frequency, severity, and response to treatment vary considerably from good to intractable and progressive mainly depending on underlying causes.
Journal of Inherited Metabolic Disease | 1999
Paul M. Matthews; Stuart Clare; Jane E. Adcock
Demonstration that contrast in magnetic resonance images can be generated based on differences in blood oxygenation has led to an explosion of interest in so-called functional magnetic resonance imaging (FMRI). FMRI can be used to map increases in blood flow that accompany local synaptic activity in the brain. The technique has proved remarkably sensitive and has been used to map a broad range of cognitive, motor and sensory processes in the brain entirely non-invasively. More recently, efforts have been made to extend this technique to the analysis of clinical problems. A major application is for presurgical localization of cerebral functions, e.g. in the surgical treatment of epilepsy. The technique also is beginning to provide information on functional consequences of abnormal brain development. Perhaps most exciting are applications to neurological impairments that are not associated with structural abnormalities, such as learning problems, dyslexia and movement disorders. It is possible that useful applications of FMRI may be found for directly mapping sites of action of CNS-active drugs. Although the extent of the potential clinical applications of this new brain mapping technique is not clear, the widespread availability of MRI scanners suggests that the technique should in some form soon become a routine tool in major neuroradiological centres.
Cerebral Cortex | 2015
Natalie L. Voets; Ricarda A. Menke; Saad Jbabdi; Masud Husain; Richard Stacey; Katherine Carpenter; Jane E. Adcock
Short-term (STM) and long-term memory (LTM) have largely been considered as separate brain systems reflecting fronto-parietal and medial temporal lobe (MTL) functions, respectively. This functional dichotomy has been called into question by evidence of deficits on aspects of working memory in patients with MTL damage, suggesting a potentially direct hippocampal contribution to STM. As the hippocampus has direct anatomical connections with the thalamus, we tested the hypothesis that damage to thalamic nuclei regulating cortico-cortical interactions may contribute to STM deficits in patients with hippocampal dysfunction. We used diffusion-weighted magnetic resonance imaging-based tractography to identify anatomical subdivisions in patients with MTL epilepsy. From these, we measured resting-state functional connectivity with detailed cortical divisions of the frontal, temporal, and parietal lobes. Whereas thalamo-temporal functional connectivity reflected LTM performance, thalamo-prefrontal functional connectivity specifically predicted STM performance. Notably, patients with hippocampal volume loss showed thalamic volume loss, most prominent in the pulvinar region, not detected in patients with normal hippocampal volumes. Aberrant thalamo-cortical connectivity in the epileptic hemisphere was mirrored in a loss of behavioral association with STM performance specifically in patients with hippocampal atrophy. These findings identify thalamo-cortical disruption as a potential mechanism contributing to STM deficits in the context of MTL damage.