Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jane E. Butler is active.

Publication


Featured researches published by Jane E. Butler.


The Journal of Physiology | 1996

Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex.

Simon C. Gandevia; Gabrielle M. Allen; Jane E. Butler; Janet L. Taylor

1. Voluntary activation of elbow flexor muscles can be optimal during brief maximal voluntary contractions (MVCs), although central fatigue, a progressive decline in the ability to drive the muscle maximally, develops during sustained or repeated efforts. We stimulated the motor cortex and motor point in human subjects to investigate motor output during fatigue. 2. The increment in force (relative to the voluntary force) produced by stimulation of the motor point of biceps brachii increased during sustained isometric MVCs of the elbow flexors. Motoneuronal output became suboptimal during the contraction, i.e. central fatigue developed and accounted for a small but significant loss of maximal voluntary force. During 3 min MVCs, voluntary activation of biceps fell to an average of 90.7% from an average of > 99%. 3. The increment in force (relative to the voluntary force) produced by magnetic cortical stimulation was initially small (1.0%) but also increased during sustained MVCs to 9.8% (with a 2 min MVC). Thus, cortical output was not optimal at the time of stimulation nor were sites distal to the motor cortex already acting maximally. 4. A sphygmomanometer cuff around the upper arm blocked blood supply to brachioradialis near the end of a sustained MVC and throughout subsequent brief MVCs. Neither maximal voluntary force nor voluntary activation recovered during ischaemia after the sustained MVC. However, fatigue‐induced changes in EMG responses to magnetic cortical stimulation recovered rapidly despite maintained ischaemia. 5. In conclusion, during sustained MVCs, voluntary activation becomes less than optimal so that force can be increased by stimulation of the motor cortex or the motor nerve. Complex changes in excitability of the motor cortex also occur with fatigue, but can be dissociated from the impairment of voluntary activation. We argue that inadequate neural drive effectively ‘upstream’ of the motor cortex must be one site involved in the genesis of central fatigue.


The Journal of Physiology | 1996

Changes in motor cortical excitability during human muscle fatigue.

Janet L. Taylor; Jane E. Butler; Gabrielle M. Allen; Simon C. Gandevia

1. The excitability of the motor cortex was investigated during fatiguing con of the elbow flexors in human subjects. During sustained contractions at 30 and 1 voluntary force (MVC), the short‐latency electromyographic responses (EMG) evoke brachii and brachioradialis by transcranial magnetic stimulation increased in si EMG in the elbow flexors following the evoked muscle potential (silent period), duration during a sustained MVC but not during 30% MVCs nor during a sustained M muscle (adductor pollicis). 2. When the blood supply to brachioradialis was blocked with sphygmomanometer cuff sustained MVC, the changes in EMG responses to transcranial stimulation rapidly control values, This suggests that changes in these responses during fatigue wer small‐diameter muscle afferents. 3. Tendon vibration during sustained MVCs indicated that the changes in the resp cortial stimulation were not mediated by reduced muscle spindle inputs. 4. Muscle action potentials evoked in brachioradialis by electrical stimulation cervicomedullary junction did not increase in size during sustained MVCs. Thus, cortically evoked responses during sustained MVCs reflects a change in cortical Although the silent period following cervicomedullary stimulation lengthened, it substantially shorter than the cortically evoked silent period. 5. The altered EMG responses to transcranial stimulation during fatigue suggest exitation and increased inhibition in the motor cortex. As these changes were un manipulation of afferent input they presumably result from intrinsic cortical pr altered voluntary drive to the motor cortex.


The Journal of Physiology | 2005

Hyperthermia: a failure of the motor cortex and the muscle

Gabrielle Todd; Jane E. Butler; Janet L. Taylor; Simon C. Gandevia

Fatigue is increased during hyperthermia, and torque declines more rapidly in sustained maximal voluntary contractions (MVCs). This can be caused by a greater decline in voluntary activation of muscle (i.e. ‘central fatigue’). The present study aimed to localize the site of failure of voluntary drive during hyperthermia. Seven subjects made brief (2–3 s) and sustained (2 min) MVCs of elbow flexor muscles in two experiments. Core temperature was normal (∼37°C) in the first experiment, and elevated (∼38.5°C) by passive heating in the second. During some MVCs, transcranial magnetic stimulation of the motor cortex (TMS) was delivered, and the evoked torque (superimposed twitch) and EMG responses were measured. During hyperthermia, voluntary torque was reduced by ∼2.4% during brief MVCs (P= 0.03), and decreased further (∼12%) during sustained MVCs (P= 0.01). The superimposed twitch amplitude in the sustained MVC was ∼50% larger (P= 0.01). Thus, the ability to drive the muscle maximally in a sustained fashion was decreased, and some motor cortical output, which could have increased torque, remained untapped by voluntary drive. The additional central fatigue was not associated with altered motor cortical ‘excitability’, as EMG responses produced by TMS were similar at the two temperatures. However, the peak relaxation rate of muscle increased by ∼20% (P= 0.005) during hyperthermia. Hence, faster motor unit firing rates would be required to produce fusion of force. The increased central fatigue during hyperthermia may represent a failure of descending voluntary drive to compensate for changed muscle properties, despite the availability of additional cortical output.


The Journal of Physiology | 1997

Contraction of the human diaphragm during rapid postural adjustments

Paul W. Hodges; Jane E. Butler; David K. McKenzie; Simon C. Gandevia

1 The response of the diaphragm to the postural perturbation produced by rapid flexion of the shoulder to a visual stimulus was evaluated in standing subjects. Gastric, oesophageal and transdiaphragmatic pressures were measured together with intramuscular and oesophageal recordings of electromyographic activity (EMG) in the diaphragm. To assess the mechanics of contraction of the diaphragm, dynamic changes in the length of the diaphragm were measured with ultrasonography. 2 With rapid flexion of the shoulder in response to a visual stimulus, EMG activity in the costal and crural diaphragm occurred about 20 ms prior to the onset of deltoid EMG. This anticipatory contraction occurred irrespective of the phase of respiration in which arm movement began. The onset of diaphragm EMG coincided with that of transverses abdominis. 3 Gastric and transdiaphragmatic pressures increased in association with the rapid arm flexion by 13.8 ± 1.9 (mean ±s.e.m.) and 13.5 ± 1.8 cmH2O, respectively. The increases occurred 49 ± 4 ms after the onset of diaphragm EMG, but preceded the onset of movement of the limb by 63 ± 7 ms. 4 Ultrasonographic measurements revealed that the costal diaphragm shortened and then lengthened progressively during the increase in transdiaphragmatic pressure. 5 This study provides definitive evidence that the human diaphragm is involved in the control of postural stability during sudden voluntary movement of the limbs.


The Journal of Physiology | 2001

Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking

Nicolas T. Petersen; Jane E. Butler; Véronique Marchand-Pauvert; Rebecca Fisher; Annick Ledebt; H. S. Pyndt; Naja Liv Hansen; Jens Bo Nielsen

1 The involvement of the motor cortex during human walking was evaluated using transcranial magnetic stimulation (TMS) of the motor cortex at a variety of intensities. Recordings of EMG activity in tibialis anterior (TA) and soleus muscles during walking were rectified and averaged. 2 TMS of low intensity (below threshold for a motor‐evoked potential, MEP) produced a suppression of ongoing EMG activity during walking. The average latency for this suppression was 40.0 ± 1.0 ms. At slightly higher intensities of stimulation there was a facilitation of the EMG activity with an average latency of 29.5 ± 1.0 ms. As the intensity of the stimulation was increased the facilitation increased in size and eventually a MEP was clear in individual sweeps. 3 In three subjects TMS was replaced by electrical stimulation over the motor cortex. Just below MEP threshold there was a clear facilitation at short latency (≈28 ms). As the intensity of the electrical stimulation was reduced the size of the facilitation decreased until it eventually disappeared. We did not observe a suppression of the EMG activity similar to that produced by TMS in any of the subjects. 4 The present study demonstrates that motoneuronal activity during walking can be suppressed by activation of intracortical inhibitory circuits. This illustrates for the first time that activity in the motor cortex is directly involved in the control of the muscles during human walking.


The Journal of Physiology | 1999

Impaired response of human motoneurones to corticospinal stimulation after voluntary exercise

Simon C. Gandevia; Nicolas T. Petersen; Jane E. Butler; Janet L. Taylor

1 Activation of descending corticospinal tracts with transmastoid electrical stimuli has been used to assess changes in the behaviour of motoneurones after voluntary contractions. Stimuli were delivered before and after maximal voluntary isometric contractions (MVCs) of the elbow flexor muscles. 2 Following a sustained MVC of the elbow flexors lasting 5–120 s there was an immediate reduction of the response to transmastoid stimulation to about half of the control value. The response recovered to control levels after about 2 min. This was evident even when the size of the responses was adjusted to accommodate changes in the maximal muscle action potential (assessed with supramaximal stimuli at the brachial plexus). 3 To determine whether the post‐contraction depression required activity in descending motor paths, motoneurones were activated by supramaximal tetanic stimulation of the musculocutaneous nerve for 10 s. This did not depress the response to transmastoid stimulation. 4 Following a sustained MVC of 120 s duration, the response to transcranial magnetic stimulation of the motor cortex gradually declined to a minimal level by about 2 min and remained depressed for more than 10 min. 5 Additional studies were performed to check that the activation of descending tracts by transmastoid stimulation was likely to involve excitation of direct corticospinal paths. When magnetic cortical stimuli and transmastoid stimuli were timed appropriately, the response to magnetic cortical stimulation could be largely occluded. 6 This study describes a novel depression of effectiveness of corticospinal actions on human motoneurones. This depression may involve the corticomotoneuronal synapse.


The Journal of Physiology | 2002

Change in length of relaxed muscle fascicles and tendons with knee and ankle movement in humans

Robert D. Herbert; Anne M. Moseley; Jane E. Butler; Simon C. Gandevia

Ultrasonography was used to measure changes in length of muscle fascicles in relaxed human tibialis anterior and gastrocnemius during passively imposed changes in joint angle. Changes in the length of muscle fascicles were compared to changes in the length of the whole muscle‐tendon units calculated from joint angles and anthropometric data. Relaxed muscle fascicles underwent much smaller changes in length than their muscle‐tendon units. On average, muscle fascicles in tibialis anterior [saw] 55 ± 13 % (mean ±s.d.) of the total change in muscle‐tendon length. This indicates nearly half of the total change in muscle‐tendon length was taken up by stretch of tendon. In gastrocnemius, which has relatively long tendons, only 27 ± 9 % of the total change in muscle‐tendon length was transmitted to muscle fascicles. Thus, the tendency for passive movement to be taken up by the tendon was greater for gastrocnemius than tibialis anterior (P = 0.002). For these muscles, the relatively large changes in tendon length across much of the physiological range of muscle‐tendon lengths could not wholly be explained by tendon slackness, changes in fibre pennation, or stretch or contraction history of the muscle. Our data confirm that when joints are moved passively, length changes [seen] by muscle fascicles can be much less than changes in the distance between muscle origin and insertion. This occurs because tendons undergo significant changes in length, even at very low forces.


European Journal of Applied Physiology | 2000

Changes in muscle afferents, motoneurons and motor drive during muscle fatigue

Janet L. Taylor; Jane E. Butler; Simon C. Gandevia

Abstract Fatigue is a reduction of maximal muscle force or power that occurs with exercise. It is accompanied by changes at multiple levels in the motor pathway and also by changes in the discharge patterns of muscle afferents. Changes in afferent firing can lead to altered perceptions and can also act on the efferent pathway. Changes in the motor pathway include slowing of motor unit firing rates during sustained maximal voluntary contractions (MVCs). Muscle responses to stimulation at different levels of the motor pathway also change. Transcranial magnetic stimulation of the motor cortex and stimulation of descending tracts in the spinal cord in human subjects show an increase in the response of the cortex and a decrease in response of the motoneuron pool during sustained MVCs. In addition, the silent period following magnetic stimulation is prolonged. During relaxation after fatiguing exercise, muscle responses to stimulation of the motor cortex are initially facilitated and are then depressed for many minutes, whereas responses to descending tract stimulation are initially depressed but recover over about 2 min. Although some of the loss of force of fatigue does occur through inadequate drive to the muscle, it is not clear which, if any, of the changes described in the cortex or the motoneurons are responsible for loss of maximal voluntary force and thus contribute to fatigue. Changes may be associated with muscle fatigue without causing it.


The Journal of Neuroscience | 2006

Fatigue-sensitive afferents inhibit extensor but not flexor motoneurons in humans.

Peter G. Martin; Janette L. Smith; Jane E. Butler; Simon C. Gandevia; Janet L. Taylor

The role of group III and IV muscle afferents in controlling the output from human muscles is poorly understood. We investigated the effects of these afferents from homonymous or antagonist muscles on motoneuron pools innervating extensor and flexor muscles of the elbow. In study 1, subjects (n = 8) performed brief maximal voluntary contractions (MVCs) of elbow extensors before and after a 2 min MVC of the extensors. During MVCs, electromyographic responses from triceps were evoked by stimulation of the corticospinal tracts [cervicomedullary motor evoked potentials (CMEPs)]. The same subjects repeated the protocol, but input from fatigue-sensitive afferents was prolonged after the fatiguing contraction by maintained muscle ischemia. In study 2, CMEPs were evoked in triceps during brief extensor MVCs before and after a 2 min sustained flexor MVC (n = 7) or in biceps during brief flexor MVCs before and after a sustained extensor MVC (n = 7). Again, ischemia was maintained after the sustained contractions. During sustained MVCs of the extensors, CMEPs in triceps decreased by ∼35%. Without muscle ischemia, CMEPs recovered within 15 s, but with maintained ischemia, they remained depressed (by ∼28%; p < 0.001). CMEPs in triceps were also depressed (by ∼20%; p < 0.001) after fatiguing flexor contractions, whereas CMEPs in biceps were facilitated (by ∼25%; p < 0.001) after fatiguing extensor contractions. During fatigue, inputs from group III and IV muscle afferents from homonymous or antagonist muscles depress extensor motoneurons but facilitate flexor motoneurons. The more pronounced inhibitory influence of these afferents on extensors suggests that these muscles may require greater cortical drive to generate force during fatigue.


Experimental Brain Research | 1999

Altered responses of human elbow flexors to peripheral-nerve and cortical stimulation during a sustained maximal voluntary contraction

Janet L. Taylor; Jane E. Butler; Simon C. Gandevia

Abstract The short-latency electromyographic response evoked by transcranial magnetic stimulation (MEP) increases in size during fatigue, but the mechanisms are unclear. Because large changes occur in the muscle action potential, we tested whether changes in the response to stimulation of the peripheral motor nerve could fully account for the increase in the MEP. Subjects (n=8) performed sustained maximal voluntary contractions (MVCs) of the right elbow flexors for 2 min. During the contraction, the MEP and the response to supramaximal stimulation of motor-nerve fibres in the brachial plexus were alternately recorded. During the contraction, responses to motor-nerve stimulation increased in area by 87±35% (mean±SD) in the biceps brachii and 74±30% in the brachioradialis, but the area of the MEPs increased by 153±86% and 175±122%, respectively. Thus, the increase in the MEP was greater than the increase in the peripheral M-wave. The onset latency of the MEP in the biceps brachii increased by 0.7±0.6 ms (range: –0.2 to 1.9 ms) during the sustained contraction. A smaller increase occurred in response to peripheral nerve stimulation (0.3±0.3 ms; from –0.3 to 0.9 ms). In the contralateral elbow flexors, neither responses to transcranial magnetic stimulation nor responses to motor-nerve stimulation changed in size or latency. During the sustained contraction, the short silent period after stimulation of the peripheral nerve (48±5 ms in biceps brachii and 48±4 ms in brachioradialis) increased in duration by about 12 ms (to 61±12 ms and 60±9 ms, respectively), whereas the silent period following transcranial magnetic stimulation increased from 238±39 ms in biceps brachii and 243±34 ms in brachioradialis to 325±41 ms and 343±42 ms, respectively. During a sustained MVC, while the motor responses to peripheral and to cortical stimulation grow concurrently, growth of the MEP cannot be entirely accounted for by changes in the muscle action potential. Hence, some of the increase in MEP size during fatigue must reflect changes in the central nervous system. Increased latency of the MEPs and lengthening of the peripherally evoked silent period are consistent with decreased excitability of the alpha motoneurone pool. Thus, an increased response from the motor cortex to the magnetic stimulus remains a likely contributor to the increase in the size of the MEP in fatigue.

Collaboration


Dive into the Jane E. Butler's collaboration.

Top Co-Authors

Avatar

Simon C. Gandevia

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Janet L. Taylor

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

David K. McKenzie

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Anna L. Hudson

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Julian P. Saboisky

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Lynne E. Bilston

Neuroscience Research Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danny J. Eckert

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Nicolas T. Petersen

Prince of Wales Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Rachel A. McBain

Neuroscience Research Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge