Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julian P. Saboisky is active.

Publication


Featured researches published by Julian P. Saboisky.


The Journal of Physiology | 2007

Neural drive to human genioglossus in obstructive sleep apnoea

Julian P. Saboisky; Jane E. Butler; David K. McKenzie; Robert B. Gorman; John Trinder; David P. White; Simon C. Gandevia

One postulated mechanism for obstructive sleep apnoea (OSA) is insufficient drive to the upper‐airway musculature during sleep, with increased (compensatory) drive during wakefulness. This generates more electromyographic activity in upper airway muscles including genioglossus. To understand drives to upper airway muscles, we recorded single motor unit activity from genioglossus in male groups of control (n= 7, 7 ± 2 events h−1) and severe OSA (n= 9, 54 ± 4 events h−1) subjects. One hundred and seventy‐eight genioglossus units were recorded using monopolar electrodes. Subjects were awake, supine and breathing through a nasal mask. The distribution of the six types of motor unit activity in genioglossus (Inspiratory Phasic, Inspiratory Tonic, Expiratory Phasic, Expiratory Tonic, Tonic and Tonic Other) was identical in both groups. Single unit action potentials in OSA were larger in area (by 34%, P < 0.05) and longer in duration (by 23%, P < 0.05). Inspiratory units were recruited earlier in OSA than control subjects. In control subjects, Inspiratory Tonic units peaked earlier than Inspiratory Phasic units, while in OSA subjects, Inspiratory Tonic and Phasic units peaked simultaneously. Onset frequencies did not differ between groups, but the peak discharge frequency for Inspiratory Phasic units was higher in OSA (22 ± 1 Hz) than control subjects (19 ± 1 Hz, P= 0.003), but conversely, the peak discharge frequency of Inspiratory Tonic units was higher in control subjects (28 ± 1 Hz versus 25 ± 1 Hz, P < 0.05). Increased motor unit action potential area indicates that neurogenic changes have occurred in OSA. In addition, the differences in the timing and firing frequency of the inspiratory classes of genioglossus motor units indicate that the output of the hypoglossal nucleus may have changed.


American Journal of Respiratory and Critical Care Medicine | 2012

Neurogenic Changes in the Upper Airway of Patients with Obstructive Sleep Apnea

Julian P. Saboisky; Daniel W. Stashuk; Andrew Hamilton-Wright; Andrea L. Carusona; Lisa M. Campana; John Trinder; Danny J. Eckert; Amy S. Jordan; David G. McSharry; David P. White; Sanjeev Nandedkar; William S. David; Atul Malhotra

RATIONALE Controversy persists regarding the presence and importance of hypoglossal nerve dysfunction in obstructive sleep apnea (OSA). OBJECTIVES We assessed quantitative parameters related to motor unit potential (MUP) morphology derived from electromyographic (EMG) signals in patients with OSA versus control subjects and hypothesized that signs of neurogenic remodeling would be present in the patients with OSA. METHODS Participants underwent diagnostic sleep studies to obtain apnea-hypopnea indices. Muscle activity was detected with 50-mm concentric needle electrodes. The concentric needle was positioned at more than 10 independent sites per subject, after the local anatomy of the upper airway musculature was examined by ultrasonography. All activity was quantified with subjects awake, during supine eupneic breathing while wearing a nasal mask connected to a pneumotachograph. Genioglossus EMG signals were analyzed offline by automated software (DQEMG), which extracted motor unit potential trains (MUPTs) contributed by individual motor units from the composite EMG signals. Quantitative measurements of MUP templates, including duration, peak-to-peak amplitude, area, area-to-amplitude ratio, and size index, were compared between the untreated patients with OSA and healthy control subjects. MEASUREMENTS AND MAIN RESULTS A total of 1,655 MUPTs from patients with OSA (n = 17; AHI, 55 ± 6/h) and control subjects (n = 14; AHI, 4 ± 1/h) were extracted from the genioglossus muscle EMG signals. MUP peak-to-peak amplitudes in the patients with OSA were not different compared with the control subjects (397.5 ± 9.0 vs. 382.5 ± 10.0 μV). However, the MUPs of the patients with OSA were longer in duration (11.5 ± 0.1 vs. 10.3 ± 0.1 ms; P < 0.001) and had a larger size index (4.09 ± 0.02 vs. 3.92 ± 0.02; P < 0.001) compared with control subjects. CONCLUSIONS These results confirm and quantify the extent and existence of structural neural remodeling in OSA.


PLOS ONE | 2012

Increased Sleep Fragmentation Leads to Impaired Off-Line Consolidation of Motor Memories in Humans

Ina Djonlagic; Julian P. Saboisky; Andrea L. Carusona; Robert Stickgold; Atul Malhotra

A growing literature supports a role for sleep after training in long-term memory consolidation and enhancement. Consequently, interrupted sleep should result in cognitive deficits. Recent evidence from an animal study indeed showed that optimal memory consolidation during sleep requires a certain amount of uninterrupted sleep. Sleep continuity is disrupted in various medical disorders. We compared performance on a motor sequence learning task (MST) in relatively young subjects with obstructive sleep apnea (n = 16; apnea-hypopnea index 17.1±2.6/h [SEM]) to a carefully matched control group (n = 15, apnea-hypopnea index 3.7±0.4/h, p<0.001. Apart from AHI, oxygen nadir and arousal index, there were no significant differences between groups in total sleep time, sleep efficiency and sleep architecture as well as subjective measures of sleepiness based on standard questionnaires. In addition performance on the psychomotor vigilance task (reaction time and lapses), which is highly sensitive to sleep deprivation showed no differences as well as initial learning performance during the training phase. However there was a significant difference in the primary outcome of immediate overnight improvement on the MST between the two groups (controls = 14.7±4%, patients = 1.1±3.6%; P = 0.023) as well as plateau performance (controls = 24.0±5.3%, patients = 10.1±2.0%; P = 0.017) and this difference was predicted by the arousal index (p = 0.02) rather than oxygen saturation (nadir and time below 90% saturation. Taken together, this outcome provides evidence that there is a clear minimum requirement of sleep continuity in humans to ensure optimal sleep dependent memory processes. It also provides important new information about the cognitive impact of obstructive sleep apnea and challenges its current definitions.


Journal of Applied Physiology | 2011

Sensorimotor function of the upper-airway muscles and respiratory sensory processing in untreated obstructive sleep apnea.

Danny J. Eckert; Yu L. Lo; Julian P. Saboisky; Amy S. Jordan; David P. White; Atul Malhotra

Numerous studies have demonstrated upper-airway neuromuscular abnormalities during wakefulness in snorers and obstructive sleep apnea (OSA) patients. However, the functional role of sensorimotor impairment in OSA pathogenesis/disease progression and its potential effects on protective upper-airway reflexes, measures of respiratory sensory processing, and force characteristics remain unclear. This study aimed to gain physiological insight into the potential role of sensorimotor impairment in OSA pathogenesis/disease progression by comparing sensory processing properties (respiratory-related evoked potentials; RREP), functionally important protective reflexes (genioglossus and tensor palatini) across a range of negative pressures (brief pulses and entrained iron lung ventilation), and tongue force and time to task failure characteristics between 12 untreated OSA patients and 13 controls. We hypothesized that abnormalities in these measures would be present in OSA patients. Upper-airway reflexes (e.g., genioglossus onset latency, 20 ± 1 vs. 19 ± 2 ms, P = 0.82), early RREP components (e.g., P1 latency 25 ± 2 vs. 25 ± 1 ms, P = 0.78), and the slope of epiglottic pressure vs. genioglossus activity during iron lung ventilation (-0.68 ± 1.0 vs. -0.80 ± 2.0 cmH(2)O/%max, P = 0.59) were not different between patients and controls. Maximal tongue protrusion force was greater in OSA patients vs. controls (35 ± 2 vs. 27 ± 2 N, P < 0.01), but task failure occurred more rapidly (149 ± 24 vs. 254 ± 23 s, P < 0.01). Upper-airway protective reflexes across a range of negative pressures as measured by electromyography and the early P1 component of the RREP are preserved in OSA patients during wakefulness. Consistent with an adaptive training effect, tongue protrusion force is increased, not decreased, in untreated OSA patients. However, OSA patients may be vulnerable to fatigue of upper-airway dilator muscles, which could contribute to disease progression.


Journal of Applied Physiology | 2010

Recruitment and rate-coding strategies of the human genioglossus muscle

Julian P. Saboisky; Amy S. Jordan; Danny J. Eckert; David P. White; John Trinder; Christian L. Nicholas; Shiva Gautam; Atul Malhotra

Single motor unit (SMU) analysis provides a means to examine the motor control of a muscle. SMUs in the genioglossus show considerable complexity, with several different firing patterns. Two of the primary stimuli that contribute to genioglossal activation are carbon dioxide (CO(2)) and negative pressure, which act through chemoreceptor and mechanoreceptor activation, respectively. We sought to determine how these stimuli affect the behavior of genioglossus SMUs. We quantified genioglossus SMU discharge activity during periods of quiet breathing, elevated CO(2) (facilitation), and continuous positive airway pressure (CPAP) administration (inhibition). CPAP was applied in 2-cmH(2)O increments until 10 cmH(2)O during hypercapnia. Five hundred ninety-one periods (each ∼ 3 breaths) of genioglossus SMU data were recorded using wire electrodes(n = 96 units) from 15 awake, supine subjects. Overall hypercapnic stimulation increased the discharge rate of genioglossus units (20.9 ± 1.0 vs. 22.7 ± 0.9 Hz). Inspiratory units were activated ∼ 13% earlier in the inspiratory cycle, and the units fired for a longer duration (80.6 ± 5.1 vs. 105.3 ± 4.2% inspiratory time; P < 0.05). Compared with baseline, an additional 32% of distinguishable SMUs within the selective electrode recording area were recruited with hypercapnia. CPAP led to progressive SMU inhibition; at ∼ 6 cmH(2)O, there were similar numbers of SMUs active compared with baseline, with peak frequencies of inspiratory units close to baseline, despite elevated CO(2) levels. At 10 cmH(2)O, the number of units was 36% less than baseline. Genioglossus inspiratory phasic SMUs respond to hypercapnic stimulation with changes in recruitment and rate coding. The SMUs respond to CPAP with derecruitment as a homogeneous population, and inspiratory phasic units show slower discharge rates. Understanding upper airway muscle recruitment/derecruitment may yield therapeutic targets for maintenance of pharyngeal patency.


Frontiers in Neurology | 2012

Functional Role of Neural Injury in Obstructive Sleep Apnea

Julian P. Saboisky; Jane E. Butler; Simon C. Gandevia; Danny J. Eckert

The causes of obstructive sleep apnea (OSA) are multifactorial. Neural injury affecting the upper airway muscles due to repetitive exposure to intermittent hypoxia and/or mechanical strain resulting from snoring and recurrent upper airway closure have been proposed to contribute to OSA disease progression. Multiple studies have demonstrated altered sensory and motor function in patients with OSA using a variety of neurophysiological and histological approaches. However, the extent to which the alterations contribute to impairments in upper airway muscle function, and thus OSA disease progression, remains uncertain. This brief review, primarily focused on data in humans, summarizes: (1) the evidence for upper airway sensorimotor injury in OSA and (2) current understanding of how these changes affect upper airway function and their potential to change OSA progression. Some unresolved questions including possible treatment targets are noted.


Sleep | 2013

A mechanism for upper airway stability during slow wave sleep.

David G. McSharry; Julian P. Saboisky; Pam DeYoung; Paul Matteis; Amy S. Jordan; John Trinder; Erik Smales; L Hess; Mengshuang Guo; Atul Malhotra

STUDY OBJECTIVES The severity of obstructive sleep apnea is diminished (sometimes markedly) during slow wave sleep (SWS). We sought to understand why SWS stabilizes the upper airway. Increased single motor unit (SMU) activity of the major upper airway dilating muscle (genioglossus) should improve upper airway stability. Therefore, we hypothesized that genioglossus SMUs would increase their activity during SWS in comparison with Stage N2 sleep. DESIGN The activity of genioglossus SMUs was studied on both sides of the transition between Stage N2 sleep and SWS. SETTING Sleep laboratory. PARTICIPANTS Twenty-nine subjects (age 38 ± 13 yr, 17 males) were studied. INTERVENTION SWS. MEASUREMENT AND RESULTS Subjects slept overnight with fine-wire electrodes in their genioglossus muscles and with full polysomnographic and end tidal carbon dioxide monitors. Fifteen inspiratory phasic (IP) and 11 inspiratory tonic (IT) units were identified from seven subjects and these units exhibited significantly increased inspiratory discharge frequencies during SWS compared with Stage N2 sleep. The peak discharge frequency of the inspiratory units (IP and IT) was 22.7 ± 4.1 Hz in SWS versus 20.3 ± 4.5 Hz in Stage N2 (P < 0.001). The IP units also fired for a longer duration (expressed as a percentage of inspiratory time) during SWS (104.6 ± 39.5 %TI) versus Stage N2 sleep (82.6 ± 39.5 %TI, P < 0.001). The IT units fired faster during expiration in SWS (14.2 ± 1.8 Hz) versus Stage N2 sleep (12.6 ± 3.1 Hz, P = 0.035). There was minimal recruitment or derecruitment of units between SWS and Stage N2 sleep. CONCLUSION Increased genioglossus SMU activity likely makes the airway more stable and resistant to collapse throughout the respiratory cycle during SWS.


Sleep | 2014

Physiological mechanisms of upper airway hypotonia during REM sleep.

David G. McSharry; Julian P. Saboisky; Pam DeYoung; Amy S. Jordan; John Trinder; Erik Smales; L Hess; Nancy L. Chamberlin; Atul Malhotra

STUDY OBJECTIVES Rapid eye movement (REM)-induced hypotonia of the major upper airway dilating muscle (genioglossus) potentially contributes to the worsening of obstructive sleep apnea that occurs during this stage. No prior human single motor unit (SMU) study of genioglossus has examined this possibility to our knowledge. We hypothesized that genioglossus SMUs would reduce their activity during stable breathing in both tonic and phasic REM compared to stage N2 sleep. Further, we hypothesized that hypopneas occurring in REM would be associated with coincident reductions in genioglossus SMU activity. DESIGN The activity of genioglossus SMUs was studied in (1) neighboring epochs of stage N2, and tonic and phasic REM; and (2) during hypopneas occurring in REM. SETTING Sleep laboratory. PARTICIPANTS 29 subjects (38 ± 13 y) (17 male). INTERVENTION Natural sleep, including REM sleep and REM hypopneas. MEASUREMENT AND RESULTS Subjects slept overnight with genioglossus fine-wire intramuscular electrodes and full polysomnography. Forty-two SMUs firing during one or more of stage N2, tonic REM, or phasic REM were sorted. Twenty inspiratory phasic (IP), 17 inspiratory tonic (IT), and five expiratory tonic (ET) SMUs were characterized. Fewer units were active during phasic REM (23) compared to tonic REM (30) and stage N2 (33). During phasic REM sleep, genioglossus IP and IT SMUs discharged at slower rates and for shorter durations than during stage N2. For example, the SMU peak frequency during phasic REM 5.7 ± 6.6 Hz (mean ± standard deviation) was less than both tonic REM 12.3 ± 9.7 Hz and stage N2 16.1 ± 10.0 Hz (P < 0.001). The peak firing frequencies of IP/IT SMUs decreased from the last breath before to the first breath of a REM hypopnea (11.8 ± 10.9 Hz versus 5.7 ± 9.4 Hz; P = 0.001). CONCLUSION Genioglossus single motor unit activity is significantly reduced in REM sleep, particularly phasic REM. Single motor unit activity decreases abruptly at the onset of REM hypopneas.


Neurorehabilitation and Neural Repair | 2011

Posterolateral Surface Electrical Stimulation of Abdominal Expiratory Muscles to Enhance Cough in Spinal Cord Injury

Jane E. Butler; Julianne Lim; Robert B. Gorman; Claire L. Boswell-Ruys; Julian P. Saboisky; Bonsan B. Lee; Simon C. Gandevia

Background. Spinal cord injury (SCI) patients have respiratory complications because of abdominal muscle weakness and paralysis, which impair the ability to cough. Objective. This study aims to enhance cough in high-level SCI subjects (n = 11, SCI at or above T6) using surface electrical stimulation of the abdominal muscles via 2 pairs of posterolaterally placed electrodes. Methods. From total lung capacity, subjects performed maximum expiratory pressure (MEP) efforts against a closed airway and voluntary cough efforts. Both efforts were performed with and without superimposed trains of electrical stimulation (50 Hz, 1 second) at a submaximal intensity set to evoke a gastric pressure (P ga) of 40 cm H2O at functional residual capacity. Results. In the MEP effort, stimulation increased the maximal P ga (from 21.4 ± 7.0 to 59.0 ± 5.7 cm H2O) and esophageal pressure (P es; 47.2 ± 11.7 to 65.6 ± 13.6 cm H2O). During the cough efforts, stimulation increased P ga (19.5 ± 6.0 to 57.9 ± 7.0 cm H2O) and P es (31.2 ± 8.7 to 56.6 ± 10.5 cm H2O). The increased expiratory pressures during cough efforts with stimulation increased peak expiratory flow (PEF, by 36% ± 5%), mean expiratory flow (by 80% ± 8%), and expired lung volume (by 41% ± 16%). In every subject, superimposed electrical stimulation improved peak expiratory flow during cough efforts (by 0.99 ± 0.12 L/s; range, 0.41-1.80 L/s). Wearing an abdominal binder did not improve stimulated cough flows or pressures. Conclusions. The increases in P ga and PEF with electrical stimulation using the novel posterolateral electrode placement are 2 to 3 times greater than improvements reported in other studies. This suggests that posterolateral electrical stimulation of abdominal muscles is a simple noninvasive way to enhance cough in individuals with SCI.


Expert Opinion on Therapeutic Targets | 2009

Potential therapeutic targets in obstructive sleep apnoea

Julian P. Saboisky; Nancy L. Chamberlin; Atul Malhotra

Obstructive sleep apnoea (OSA) is a disease of ever-increasing importance due to its association with multiple impairments and rising prevalence in an increasingly susceptible demographic. The syndrome is linked with loud snoring, disrupted sleep and observed apnoeas. Serious co-morbidities associated with OSA appear to be reversed by continuous positive airway pressure (CPAP) treatment; however, CPAP is variably tolerated leaving many patients untreated and emphasising the need for alternative treatments. Virtually all OSA patients have airways that are anatomically vulnerable to collapse, but numerous pathophysiological factors underlie when and how OSA is manifested. This review describes how the complexity of OSA requires multiple treatment approaches that are individually targeted. This approach may take the form of more specific diagnoses in terms of the mechanisms underlying OSA as well as rational pharmacological treatment directed toward such disparate ends as arousal threshold and ventilatory control/chemosensitivity, and mechanical treatment in the form of surgery and augmentation of lung volumes.

Collaboration


Dive into the Julian P. Saboisky's collaboration.

Top Co-Authors

Avatar

Atul Malhotra

University of California

View shared research outputs
Top Co-Authors

Avatar

Simon C. Gandevia

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Jane E. Butler

Neuroscience Research Australia

View shared research outputs
Top Co-Authors

Avatar

Danny J. Eckert

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

John Trinder

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David P. White

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David G. McSharry

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Billy L. Luu

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge