Jane E. Warren
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jane E. Warren.
The Journal of Neuroscience | 2006
Galina Spitsyna; Jane E. Warren; Sophie K. Scott; Federico Turkheimer; Richard Wise
There is general agreement that, after initial processing in unimodal sensory cortex, the processing pathways for spoken and written language converge to access verbal meaning. However, the existing literature provides conflicting accounts of the cortical location of this convergence. Most aphasic stroke studies localize verbal comprehension to posterior temporal and inferior parietal cortex (Wernicke’s area), whereas evidence from focal cortical neurodegenerative syndromes instead implicates anterior temporal cortex. Previous functional imaging studies in normal subjects have failed to reconcile these opposing positions. Using a functional imaging paradigm in normal subjects that used spoken and written narratives and multiple baselines, we demonstrated common activation during implicit comprehension of spoken and written language in inferior and lateral regions of the left anterior temporal cortex and at the junction of temporal, occipital, and parietal cortex. These results indicate that verbal comprehension uses unimodal processing streams that converge in both anterior and posterior heteromodal cortical regions in the left temporal lobe.
Brain | 2011
Jonathan D. Rohrer; Tammaryn Lashley; Jonathan M. Schott; Jane E. Warren; Simon Mead; Adrian M. Isaacs; Jonathan Beck; John Hardy; Rohan de Silva; Elizabeth K. Warrington; Claire Troakes; Safa Al-Sarraj; Andrew King; Barbara Borroni; Matthew J. Clarkson; Sebastien Ourselin; Janice L. Holton; Nick C. Fox; Tamas Revesz; Jason D. Warren
Relating clinical symptoms to neuroanatomical profiles of brain damage and ultimately to tissue pathology is a key challenge in the field of neurodegenerative disease and particularly relevant to the heterogeneous disorders that comprise the frontotemporal lobar degeneration spectrum. Here we present a retrospective analysis of clinical, neuropsychological and neuroimaging (volumetric and voxel-based morphometric) features in a pathologically ascertained cohort of 95 cases of frontotemporal lobar degeneration classified according to contemporary neuropathological criteria. Forty-eight cases (51%) had TDP-43 pathology, 42 (44%) had tau pathology and five (5%) had fused-in-sarcoma pathology. Certain relatively specific clinicopathological associations were identified. Semantic dementia was predominantly associated with TDP-43 type C pathology; frontotemporal dementia and motoneuron disease with TDP-43 type B pathology; young-onset behavioural variant frontotemporal dementia with FUS pathology; and the progressive supranuclear palsy syndrome with progressive supranuclear palsy pathology. Progressive non-fluent aphasia was most commonly associated with tau pathology. However, the most common clinical syndrome (behavioural variant frontotemporal dementia) was pathologically heterogeneous; while pathologically proven Picks disease and corticobasal degeneration were clinically heterogeneous, and TDP-43 type A pathology was associated with similar clinical features in cases with and without progranulin mutations. Volumetric magnetic resonance imaging, voxel-based morphometry and cluster analyses of the pathological groups here suggested a neuroanatomical framework underpinning this clinical and pathological diversity. Frontotemporal lobar degeneration-associated pathologies segregated based on their cerebral atrophy profiles, according to the following scheme: asymmetric, relatively localized (predominantly temporal lobe) atrophy (TDP-43 type C); relatively symmetric, relatively localized (predominantly temporal lobe) atrophy (microtubule-associated protein tau mutations); strongly asymmetric, distributed atrophy (Picks disease); relatively symmetric, predominantly extratemporal atrophy (corticobasal degeneration, fused-in-sarcoma pathology). TDP-43 type A pathology was associated with substantial individual variation; however, within this group progranulin mutations were associated with strongly asymmetric, distributed hemispheric atrophy. We interpret the findings in terms of emerging network models of neurodegenerative disease: the neuroanatomical specificity of particular frontotemporal lobar degeneration pathologies may depend on an interaction of disease-specific and network-specific factors.
The Journal of Neuroscience | 2006
Jane E. Warren; Disa Sauter; Frank Eisner; Jade Wiland; M. Alexander Dresner; Richard Wise; Stuart Rosen; Sophie K. Scott
Social interaction relies on the ability to react to communication signals. Although cortical sensory–motor “mirror” networks are thought to play a key role in visual aspects of primate communication, evidence for a similar generic role for auditory–motor interaction in primate nonverbal communication is lacking. We demonstrate that a network of human premotor cortical regions activated during facial movement is also involved in auditory processing of affective nonverbal vocalizations. Within this auditory–motor mirror network, distinct functional subsystems respond preferentially to emotional valence and arousal properties of heard vocalizations. Positive emotional valence enhanced activation in a left posterior inferior frontal region involved in representation of prototypic actions, whereas increasing arousal enhanced activation in presupplementary motor area cortex involved in higher-order motor control. Our findings demonstrate that listening to nonverbal vocalizations can automatically engage preparation of responsive orofacial gestures, an effect that is greatest for positive-valence and high-arousal emotions. The automatic engagement of responsive orofacial gestures by emotional vocalizations suggests that auditory–motor interactions provide a fundamental mechanism for mirroring the emotional states of others during primate social behavior. Motor facilitation by positive vocal emotions suggests a basic neural mechanism for establishing cohesive bonds within primate social groups.
Brain | 2009
Jane E. Warren; Jennifer T. Crinion; Matthew A. Lambon Ralph; Richard Wise
Focal brain lesions are assumed to produce language deficits by two basic mechanisms: local cortical dysfunction at the lesion site, and remote cortical dysfunction due to disruption of the transfer and integration of information between connected brain regions. However, functional imaging studies investigating language outcome after aphasic stroke have tended to focus only on the role of local cortical function. In this positron emission tomography functional imaging study, we explored relationships between language comprehension performance after aphasic stroke and the functional connectivity of a key speech-processing region in left anterolateral superior temporal cortex. We compared the organization of left anterolateral superior temporal cortex functional connections during narrative speech comprehension in normal subjects with left anterolateral superior temporal cortex connectivity in a group of chronic aphasic stroke patients. We then evaluated the language deficits associated with altered left anterolateral superior temporal cortex connectivity in aphasic stroke. During normal narrative speech comprehension, left anterolateral superior temporal cortex displayed positive functional connections with left anterior basal temporal cortex, left inferior frontal gyrus and homotopic cortex in right anterolateral superior temporal cortex. As a group, aphasic patients demonstrated a selective disruption of the normal functional connection between left and right anterolateral superior temporal cortices. We observed that deficits in auditory single word and sentence comprehension correlated both with the degree of disruption of left-right anterolateral superior temporal cortical connectivity and with local activation in the anterolateral superior temporal cortex. Subgroup analysis revealed that aphasic patients with preserved positive intertemporal connectivity displayed better receptive language function; these patients also showed greater than normal left inferior frontal gyrus activity, suggesting a possible ‘top-down’ compensatory mechanism. These results demonstrate that functional connectivity between anterolateral superior temporal cortex and right anterior superior temporal cortex is a marker of receptive language outcome after aphasic stroke, and illustrate that language system organization after focal brain lesions may be marked by complex signatures of altered local and pathway-level function.
The Journal of Neuroscience | 2007
Malaka Awad; Jane E. Warren; Sophie K. Scott; Federico Turkheimer; Richard Wise
Humans devote much time to the exchange of memories within the context of shared general and personal semantic knowledge. Our hypothesis was that functional imaging in normal subjects would demonstrate the convergence of speech comprehension and production on high-order heteromodal and amodal cortical areas implicated in declarative memory functions. Activity independent of speech phase (that is, comprehension and production) was most evident in the left and right lateral anterior temporal cortex. Significant activity was also observed in the posterior cortex, ventral to the angular gyri. The left and right hippocampus and adjacent inferior temporal cortex were active during speech comprehension, compatible with mnemonic encoding of narrative information, but activity was significantly less during the overt memory retrieval associated with speech production. Therefore, although clinical studies suggest that hippocampal function is necessary for the retrieval as well as the encoding of memories, the former appears to depend on much less net synaptic activity. In contrast, the retrosplenial/posterior cingulate cortex and the parahippocampal area, which are closely associated anatomically with the hippocampus, were equally active during both speech comprehension and production. The results demonstrate why a severe and persistent inability both to understand and produce meaningful speech in the absence of an impairment to process linguistic forms is usually only observed after bilateral, and particularly anterior, destruction of the temporal lobes, and emphasize the importance of retrosplenial/posterior cingulate cortex, an area known to be affected early in the course of Alzheimers disease, in the processing of memories during communication.
Brain | 2014
Sonia L.E. Brownsett; Jane E. Warren; Fatemeh Geranmayeh; Zoe Woodhead; Robert Leech; Richard Wise
Aphasic deficits are usually only interpreted in terms of domain-specific language processes. However, effective human communication and tests that probe this complex cognitive skill are also dependent on domain-general processes. In the clinical context, it is a pragmatic observation that impaired attention and executive functions interfere with the rehabilitation of aphasia. One system that is important in cognitive control is the salience network, which includes dorsal anterior cingulate cortex and adjacent cortex in the superior frontal gyrus (midline frontal cortex). This functional imaging study assessed domain-general activity in the midline frontal cortex, which was remote from the infarct, in relation to performance on a standard test of spoken language in 16 chronic aphasic patients both before and after a rehabilitation programme. During scanning, participants heard simple sentences, with each listening trial followed immediately by a trial in which they repeated back the previous sentence. Listening to sentences in the context of a listen–repeat task was expected to activate regions involved in both language-specific processes (speech perception and comprehension, verbal working memory and pre-articulatory rehearsal) and a number of task-specific processes (including attention to utterances and attempts to overcome pre-response conflict and decision uncertainty during impaired speech perception). To visualize the same system in healthy participants, sentences were presented to them as three-channel noise-vocoded speech, thereby impairing speech perception and assessing whether this evokes domain general cognitive systems. As expected, contrasting the more difficult task of perceiving and preparing to repeat noise-vocoded speech with the same task on clear speech demonstrated increased activity in the midline frontal cortex in the healthy participants. The same region was activated in the aphasic patients as they listened to standard (undistorted) sentences. Using a region of interest defined from the data on the healthy participants, data from the midline frontal cortex was obtained from the patients. Across the group and across different scanning sessions, activity correlated significantly with the patients’ communicative abilities. This correlation was not influenced by the sizes of the lesion or the patients’ chronological ages. This is the first study that has directly correlated activity in a domain general system, specifically the salience network, with residual language performance in post-stroke aphasia. It provides direct evidence in support of the clinical intuition that domain-general cognitive control is an essential factor contributing to the potential for recovery from aphasic stroke.
NeuroImage | 2007
Jennifer L. Whitwell; Elizabeth L Sampson; Clement Loy; Jane E. Warren; Nick C. Fox; Jason D. Warren
The brain bases of specific human behaviours in health and disease are not well established. In this voxel-based morphometric (VBM) study we demonstrate neuroanatomical signatures of different abnormalities of eating behaviour (pathological sweet tooth and increased food consumption, or hyperphagia) in individuals with frontotemporal lobar degeneration (FTLD). Sixteen male patients with FTLD were assessed using the Manchester and Oxford Universities Scale for the Psychopathological Assessment of Dementia and classified according to the presence or absence of abnormal eating behaviours. Volumetric brain magnetic resonance imaging was performed in all patients and in a group of nine healthy age-matched male controls and grey matter changes were assessed using an optimised VBM protocol. Compared with healthy controls, the FTLD group had a typical pattern of extensive bilateral grey matter loss predominantly involving the frontal and temporal lobes. Within the FTLD group, grey matter changes associated with different abnormal behaviours were assessed independently using a covariate-only model. The development of pathological sweet tooth was associated with grey matter loss in a distributed brain network including bilateral posterolateral orbitofrontal cortex (Brodmann areas 12/47) and right anterior insula. Hyperphagia was associated with more focal grey matter loss in anterolateral OFC bilaterally (Brodmann area 11). In accord with emerging evidence in humans and other species, our findings implicate distinct components of a multi-component brain network in the control of specific aspects of eating behaviour.
Brain | 2010
Rohani Omar; Julia C. Hailstone; Jane E. Warren; Sebastian J. Crutch; Jason D. Warren
Despite much recent interest in the clinical neuroscience of music processing, the cognitive organization of music as a domain of non-verbal knowledge has been little studied. Here we addressed this issue systematically in two expert musicians with clinical diagnoses of semantic dementia and Alzheimer’s disease, in comparison with a control group of healthy expert musicians. In a series of neuropsychological experiments, we investigated associative knowledge of musical compositions (musical objects), musical emotions, musical instruments (musical sources) and music notation (musical symbols). These aspects of music knowledge were assessed in relation to musical perceptual abilities and extra-musical neuropsychological functions. The patient with semantic dementia showed relatively preserved recognition of musical compositions and musical symbols despite severely impaired recognition of musical emotions and musical instruments from sound. In contrast, the patient with Alzheimer’s disease showed impaired recognition of compositions, with somewhat better recognition of composer and musical era, and impaired comprehension of musical symbols, but normal recognition of musical emotions and musical instruments from sound. The findings suggest that music knowledge is fractionated, and superordinate musical knowledge is relatively more robust than knowledge of particular music. We propose that music constitutes a distinct domain of non-verbal knowledge but shares certain cognitive organizational features with other brain knowledge systems. Within the domain of music knowledge, dissociable cognitive mechanisms process knowledge derived from physical sources and the knowledge of abstract musical entities.
Neurocase | 2003
Jason D. Warren; Jane E. Warren; Nick C. Fox; Elizabeth K. Warrington
We describe a 76-year-old man (ADY) with dynamic aphasia in the setting of a degenerative frontal lobe dementia: primary progressive dynamic aphasia. He displayed a striking paucity of propositional speech despite intact speech production, and preserved singing and prosody. Vocal expression in the verbal and musical domains was investigated in a series of neuropsychological experiments based on novel language and musical tasks that were designed to establish the nature and specificity of the verbal output deficit. The features of the language disorder indicated that the speech output pathway was disrupted at the early stage of generation of a new pre-verbal message. In contrast, tests of musical output demonstrated that the generation of new musical ideas was unimpaired. The domain-specificity of dynamic aphasia may result from the disruption of specific cognitive processes necessary for the creation of verbal messages, as well as selective damage of brain regions involved in language production.
Cerebral Cortex | 2014
Samuel Evans; Jeong S. Kyong; Stuart Rosen; Narly Golestani; Jane E. Warren; Carolyn McGettigan; Janaina Mourão-Miranda; Rjs Wise; Sophie K. Scott
An anterior pathway, concerned with extracting meaning from sound, has been identified in nonhuman primates. An analogous pathway has been suggested in humans, but controversy exists concerning the degree of lateralization and the precise location where responses to intelligible speech emerge. We have demonstrated that the left anterior superior temporal sulcus (STS) responds preferentially to intelligible speech (Scott SK, Blank CC, Rosen S, Wise RJS. 2000. Identification of a pathway for intelligible speech in the left temporal lobe. Brain. 123:2400–2406.). A functional magnetic resonance imaging study in Cerebral Cortex used equivalent stimuli and univariate and multivariate analyses to argue for the greater importance of bilateral posterior when compared with the left anterior STS in responding to intelligible speech (Okada K, Rong F, Venezia J, Matchin W, Hsieh IH, Saberi K, Serences JT,Hickok G. 2010. Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech. 20: 2486–2495.). Here, we also replicate our original study, demonstrating that the left anterior STS exhibits the strongest univariate response and, in decoding using the bilateral temporal cortex, contains the most informative voxels showing an increased response to intelligible speech. In contrast, in classifications using local “searchlights” and a whole brain analysis, we find greater classification accuracy in posterior rather than anterior temporal regions. Thus, we show that the precise nature of the multivariate analysis used will emphasize different response profiles associated with complex sound to speech processing.