Jane M. Withka
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jane M. Withka.
Journal of Medicinal Chemistry | 2015
Huy N. Hoang; K Song; Timothy A. Hill; David R. Derksen; David J. Edmonds; W.M. Kok; Chris Limberakis; Spiros Liras; Paula M. Loria; Mascitti; Alan M. Mathiowetz; Justin M. Mitchell; David W. Piotrowski; David A. Price; Robert Vernon Stanton; Jacky Y. Suen; Jane M. Withka; David A. Griffith; David P. Fairlie
Cyclic constraints are incorporated into an 11-residue analogue of the N-terminus of glucagon-like peptide-1 (GLP-1) to investigate effects of structure on agonist activity. Cyclization through linking side chains of residues 2 and 5 or 5 and 9 produced agonists at nM concentrations in a cAMP assay. 2D NMR and CD spectra revealed an N-terminal β-turn and a C-terminal helix that differentially influenced affinity and agonist potency. These structures can inform development of small molecule agonists of the GLP-1 receptor to treat type 2 diabetes.
Journal of Biological Chemistry | 2010
Michelle Pacholec; John E. Bleasdale; Boris A. Chrunyk; David Cunningham; Declan Flynn; Robert S. Garofalo; David A. Griffith; Matt Griffor; Pat Loulakis; Brandon Pabst; Xiayang Qiu; Brian J. Stockman; Venkataraman Thanabal; Alison H. Varghese; Jessica Ward; Jane M. Withka; Kay Ahn
Sirtuins catalyze NAD+-dependent protein deacetylation and are critical regulators of transcription, apoptosis, metabolism, and aging. There are seven human sirtuins (SIRT1–7), and SIRT1 has been implicated as a key mediator of the pathways downstream of calorie restriction that have been shown to delay the onset and reduce the incidence of age-related diseases such as type 2 diabetes. Increasing SIRT1 activity, either by transgenic overexpression of the Sirt1 gene in mice or by pharmacological activation by small molecule activators resveratrol and SRT1720, has shown beneficial effects in rodent models of type 2 diabetes, indicating that SIRT1 may represent an attractive therapeutic target. Herein, we have assessed purported SIRT1 activators by employing biochemical assays utilizing native substrates, including a p53-derived peptide substrate lacking a fluorophore as well as the purified native full-length protein substrates p53 and acetyl-CoA synthetase1. SRT1720, its structurally related compounds SRT2183 and SRT1460, and resveratrol do not lead to apparent activation of SIRT1 with native peptide or full-length protein substrates, whereas they do activate SIRT1 with peptide substrate containing a covalently attached fluorophore. Employing NMR, surface plasmon resonance, and isothermal calorimetry techniques, we provide evidence that these compounds directly interact with fluorophore-containing peptide substrates. Furthermore, we demonstrate that SRT1720 neither lowers plasma glucose nor improves mitochondrial capacity in mice fed a high fat diet. SRT1720, SRT2183, SRT1460, and resveratrol exhibit multiple off-target activities against receptors, enzymes, transporters, and ion channels. Taken together, we conclude that SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1.
Neuron | 1995
Jayashree Aiyar; Jane M. Withka; James P. Rizzi; David H. Singleton; Glenn C. Andrews; Wen Lin; James G. Boyd; Douglas C. Hanson; Mariella Simon; Brent A. Dethlefs; Chao-lin Lee; James E. Hall; George A. Gutman; K. George Chandy
The architecture of the pore-region of a voltage-gated K+ channel, Kv1.3, was probed using four high affinity scorpion toxins as molecular calipers. We established the structural relatedness of these toxins by solving the structures of kaliotoxin and margatoxin and comparing them with the published structure of charybdotoxin; a homology model of noxiustoxin was then developed. Complementary mutagenesis of Kv1.3 and these toxins, combined with electrostatic compliance and thermodynamic mutant cycle analyses, allowed us to identify multiple toxin-channel interactions. Our analyses reveal the existence of a shallow vestibule at the external entrance to the pore. This vestibule is approximately 28-32 A wide at its outer margin, approximately 28-34 A wide at its base, and approximately 4-8 A deep. The pore is 9-14 A wide at its external entrance and tapers to a width of 4-5 A at a depth of approximately 5-7 A from the vestibule. This structural information should directly aid in developing topological models of the pores of related ion channels and facilitate therapeutic drug design.
Structure | 1993
Jane M. Withka; Daniel F. Wyss; Gerhard Wagner; A. R. N. Arulanandam; Ellis L. Reinherz; Michael A. Recny
BACKGROUND CD2, a T-cell specific surface glycoprotein, is critically important for mediating adherence of T cells to antigen-presenting cells or target cells. Domain 1 of human CD2 is responsible for cell adhesion, binding to CD58 (LFA-3) expressed on the cell to which the T cell binds. Human CD2 domain 1 requires N-linked carbohydrate to maintain its native conformation and ability to bind CD58. In contrast, rat CD2 does not require N-linked carbohydrate, and binds to a different ligand, CD48. RESULTS The three-dimensional structure of the glycosylated form of domain 1 of human CD2 has been determined by NMR spectroscopy. The overall structure resembles the typical beta-barrel of an immunoglobulin variable domain. Nuclear Overhauser enhancement contacts between the protein and the N-linked glycan have been tentatively identified. CONCLUSION Based on our results, we propose a model showing how the N-linked glycan might be positioned in the human CD2 domain 1 structure. The model provides an explanation for the observed instability of deglycosylated human CD2, and allows residues that are important for CD58 binding to be differentiated from those affecting conformational stability via interactions with the glycan.
Journal of the American Chemical Society | 2012
Sreeman K. Mamidyala; Sanjay Dutta; Boris A. Chrunyk; Cathy Préville; Hong Wang; Jane M. Withka; Alexander McColl; Timothy A. Subashi; Steven J. Hawrylik; Matthew C. Griffor; Sung Kim; Jeffrey A. Pfefferkorn; David A. Price; Elnaz Menhaji-Klotz; Vincent Mascitti; M. G. Finn
The asialoglycoprotein receptor (ASGPR) is a high-capacity galactose-binding receptor expressed on hepatocytes that binds its native substrates with low affinity. More potent ligands are of interest for hepatic delivery of therapeutic agents. We report several classes of galactosyl analogues with varied substitution at the anomeric, C2-, C5-, and C6-positions. Significant increases in binding affinity were noted for several trifluoromethylacetamide derivatives without covalent attachment to the protein. A variety of new ligands were obtained with affinity for ASGPR as good as or better than that of the parent N-acetylgalactosamine, showing that modification on either side of the key C3,C4-diol moiety is well tolerated, consistent with previous models of a shallow binding pocket. The galactosyl pyranose motif therefore offers many opportunities for the attachment of other functional units or payloads while retaining low-micromolar or better affinity for the ASGPR.
Journal of Medicinal Chemistry | 2012
Michael Aaron Brodney; Gabriela Barreiro; Kevin Ogilvie; Eva Hajos-Korcsok; John C. Murray; Felix Vajdos; Claude Ambroise; Curt Christoffersen; Katherine Fisher; Lorraine Lanyon; JianHua Liu; Charles E. Nolan; Jane M. Withka; Kris A. Borzilleri; Ivan Viktorovich Efremov; Christine E. Oborski; Alison H. Varghese; Brian T. O’Neill
β-Secretase 1 (BACE-1) is an attractive therapeutic target for the treatment and prevention of Alzheimers disease (AD). Herein, we describe the discovery of a novel class of BACE-1 inhibitors represented by sulfamide 14g, using a medicinal chemistry strategy to optimize central nervous system (CNS) penetration by minimizing hydrogen bond donors (HBDs) and reducing P-glycoprotein (P-gp) mediated efflux. We have also taken advantage of the combination of structure based drug design (SBDD) to guide the optimization of the sulfamide analogues and the in silico tool WaterMap to explain the observed SAR. Compound 14g is a potent inhibitor of BACE-1 with excellent permeability and a moderate P-gp liability. Administration of 14g to mice produced a significant, dose-dependent reduction in central Aβ(X-40) levels at a free drug exposure equivalent to the whole cell IC(50) (100 nM). Furthermore, studies of the P-gp knockout mouse provided evidence that efflux transporters affected the amount of Aβ lowering versus that observed in wild-type (WT) mouse at an equivalent dose.
Bioorganic & Medicinal Chemistry Letters | 2001
Stephen W. Wright; David L. Hageman; Lester D. McClure; Anthony A. Carlo; Judith L. Treadway; Alan M. Mathiowetz; Jane M. Withka; Paul H. Bauer
Anilinoquinazolines currently of interest as inhibitors of tyrosine kinases have been found to be allosteric inhibitors of the enzyme fructose 1,6-bisphosphatase. These represent a new approach to inhibition of F16BPase and serve as leads for further drug design. Enzyme inhibition is achieved by binding at an unidentified allosteric site.
Journal of Computer-aided Molecular Design | 2011
Wan F. Lau; Jane M. Withka; David Hepworth; Thomas V. Magee; Yuhua J. Du; Gregory A. Bakken; Michael D. Miller; Zachary S. Hendsch; Venkataraman Thanabal; Steve A. Kolodziej; Li Xing; Qiyue Hu; Lakshmi Narasimhan; Robert Love; Maura E. Charlton; Samantha J. Hughes; Willem P. van Hoorn; James E. J. Mills
Fragment Based Drug Discovery (FBDD) continues to advance as an efficient and alternative screening paradigm for the identification and optimization of novel chemical matter. To enable FBDD across a wide range of pharmaceutical targets, a fragment screening library is required to be chemically diverse and synthetically expandable to enable critical decision making for chemical follow-up and assessing new target druggability. In this manuscript, the Pfizer fragment library design strategy which utilized multiple and orthogonal metrics to incorporate structure, pharmacophore and pharmacological space diversity is described. Appropriate measures of molecular complexity were also employed to maximize the probability of detection of fragment hits using a variety of biophysical and biochemical screening methods. In addition, structural integrity, purity, solubility, fragment and analog availability as well as cost were important considerations in the selection process. Preliminary analysis of primary screening results for 13 targets using NMR Saturation Transfer Difference (STD) indicates the identification of uM–mM hits and the uniqueness of hits at weak binding affinities for these targets.
Journal of Medicinal Chemistry | 2016
Kimberly O'keefe Cameron; Daniel W. Kung; Amit S. Kalgutkar; Ravi G. Kurumbail; Russell A. Miller; Christopher T. Salatto; Jessica Ward; Jane M. Withka; Samit Kumar Bhattacharya; Markus Boehm; Kris A. Borzilleri; Janice A. Brown; Matthew F. Calabrese; Nicole Caspers; Emily Cokorinos; Edward L. Conn; Matthew S. Dowling; David J. Edmonds; Heather Eng; Dilinie P. Fernando; Richard K. Frisbie; David Hepworth; James A. Landro; Yuxia Mao; Francis Rajamohan; Allan R. Reyes; Colin R. Rose; Tim Ryder; Andre Shavnya; Aaron Smith
Adenosine monophosphate-activated protein kinase (AMPK) is a protein kinase involved in maintaining energy homeostasis within cells. On the basis of human genetic association data, AMPK activators were pursued for the treatment of diabetic nephropathy. Identification of an indazole amide high throughput screening (HTS) hit followed by truncation to its minimal pharmacophore provided an indazole acid lead compound. Optimization of the core and aryl appendage improved oral absorption and culminated in the identification of indole acid, PF-06409577 (7). Compound 7 was advanced to first-in-human trials for the treatment of diabetic nephropathy.
Journal of Medicinal Chemistry | 2012
Ivan Viktorovich Efremov; Felix Vajdos; Kris A. Borzilleri; Steven Capetta; Hou Chen; Peter Hans Dorff; Jason K. Dutra; Steven Wayne Goldstein; Mahmoud N. Mansour; Alexander S. McColl; Stephen Noell; Christine E. Oborski; Thomas N. O’Connell; Theresa J. O’Sullivan; Jayvardhan Pandit; Hong Wang; BinQing Wei; Jane M. Withka
The aspartyl protease β-secretase, or BACE, has been demonstrated to be a key factor in the proteolytic formation of Aβ-peptide, a major component of plaques in the brains of Alzheimers disease (AD) patients, and inhibition of this enzyme has emerged as a major strategy for pharmacologic intervention in AD. An X-ray-based fragment screen of Pfizers proprietary fragment collection has resulted in the identification of a novel BACE binder featuring spiropyrrolidine framework. Although exhibiting only weak inhibitory activity against the BACE enzyme, the small compound was verified by biophysical and NMR-based methods as a bona fide BACE inhibitor. Subsequent optimization of the lead compound, relying heavily on structure-based drug design and computational prediction of physiochemical properties, resulted in a nearly 1000-fold improvement in potency while maintaining ligand efficiency and properties predictive of good permeability and low P-gp liability.