Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shenping Liu is active.

Publication


Featured researches published by Shenping Liu.


Journal of Biological Chemistry | 2006

Crystal Structure of the Herpes Simplex Virus 1 DNA Polymerase

Shenping Liu; John D. Knafels; Jeanne S. Chang; Gregory A. Waszak; Eric T. Baldwin; Martin R. Deibel; Darrell R. Thomsen; Fred L. Homa; Peter A. Wells; Monica C. Tory; Roger A. Poorman; Hua Gao; Xiayang Qiu; Andrew P. Seddon

Herpesviruses are the second leading cause of human viral diseases. Herpes Simplex Virus types 1 and 2 and Varicella-zoster virus produce neurotropic infections such as cutaneous and genital herpes, chickenpox, and shingles. Infections of a lymphotropic nature are caused by cytomegalovirus, HSV-6, HSV-7, and Epstein-Barr virus producing lymphoma, carcinoma, and congenital abnormalities. Yet another series of serious health problems are posed by infections in immunocompromised individuals. Common therapies for herpes viral infections employ nucleoside analogs, such as Acyclovir, and target the viral DNA polymerase, essential for viral DNA replication. Although clinically useful, this class of drugs exhibits a narrow antiviral spectrum, and resistance to these agents is an emerging problem for disease management. A better understanding of herpes virus replication will help the development of new safe and effective broad spectrum anti-herpetic drugs that fill an unmet need. Here, we present the first crystal structure of a herpesvirus polymerase, the Herpes Simplex Virus type 1 DNA polymerase, at 2.7 Å resolution. The structural similarity of this polymerase to other α polymerases has allowed us to construct high confidence models of a replication complex of the polymerase and of Acyclovir as a DNA chain terminator. We propose a novel inhibition mechanism in which a representative of a series of non-nucleosidic viral polymerase inhibitors, the 4-oxo-dihydroquinolines, binds at the polymerase active site interacting non-covalently with both the polymerase and the DNA duplex.


Journal of Medicinal Chemistry | 2012

Discovery of (S)-6-(3-Cyclopentyl-2-(4-(trifluoromethyl)-1H-imidazol-1-yl)propanamido)nicotinic Acid as a Hepatoselective Glucokinase Activator Clinical Candidate for Treating Type 2 Diabetes Mellitus

Jeffrey A. Pfefferkorn; Angel Guzman-Perez; John Litchfield; Robert J. Aiello; Judith L. Treadway; John C. Pettersen; Martha L. Minich; Kevin J. Filipski; Christopher S. Jones; Meihua Tu; Gary E. Aspnes; Hud Risley; Jianwei Bian; Benjamin D. Stevens; Patricia Bourassa; Theresa D’Aquila; Levenia Baker; Nicole Barucci; Alan Robertson; Francis Bourbonais; David R. Derksen; Margit MacDougall; Over Cabrera; Jing Chen; Amanda Lee Lapworth; James A. Landro; William J. Zavadoski; Karen Atkinson; Nahor Haddish-Berhane; Beijing Tan

Glucokinase is a key regulator of glucose homeostasis, and small molecule allosteric activators of this enzyme represent a promising opportunity for the treatment of type 2 diabetes. Systemically acting glucokinase activators (liver and pancreas) have been reported to be efficacious but in many cases present hypoglycaemia risk due to activation of the enzyme at low glucose levels in the pancreas, leading to inappropriately excessive insulin secretion. It was therefore postulated that a liver selective activator may offer effective glycemic control with reduced hypoglycemia risk. Herein, we report structure-activity studies on a carboxylic acid containing series of glucokinase activators with preferential activity in hepatocytes versus pancreatic β-cells. These activators were designed to have low passive permeability thereby minimizing distribution into extrahepatic tissues; concurrently, they were also optimized as substrates for active liver uptake via members of the organic anion transporting polypeptide (OATP) family. These studies lead to the identification of 19 as a potent glucokinase activator with a greater than 50-fold liver-to-pancreas ratio of tissue distribution in rodent and non-rodent species. In preclinical diabetic animals, 19 was found to robustly lower fasting and postprandial glucose with no hypoglycemia, leading to its selection as a clinical development candidate for treating type 2 diabetes.


Journal of Medicinal Chemistry | 2009

Discovery, SAR, and Pharmacokinetics of a Novel 3-Hydroxyquinolin-2(1H)-one Series of Potent d-Amino Acid Oxidase (DAAO) Inhibitors†

Allen J. Duplantier; Stacey L. Becker; Michael John Bohanon; Kris A. Borzilleri; Boris A. Chrunyk; James T. Downs; Lain-Yen Hu; Ayman El-Kattan; Larry C. James; Shenping Liu; Jiemin Lu; Noha Maklad; Mahmoud N. Mansour; Scot Mente; Mary Piotrowski; Subas M. Sakya; Susan Sheehan; Stefanus J. Steyn; Christine A. Strick; Victoria A. Williams; Lei Zhang

3-Hydroxyquinolin-2(1H)-one (2) was discovered by high throughput screening in a functional assay to be a potent inhibitor of human DAAO, and its binding affinity was confirmed in a Biacore assay. Cocrystallization of 2 with the human DAAO enzyme defined the binding site and guided the design of new analogues. The SAR, pharmacokinetics, brain exposure, and effects on cerebellum D-serine are described. Subsequent evaluation against the rat DAAO enzyme revealed a divergent SAR versus the human enzyme and may explain the high exposures of drug necessary to achieve significant changes in rat or mouse cerebellum D-serine.


Journal of Medicinal Chemistry | 2012

Potent Inhibitors of LpxC for the Treatment of Gram-Negative Infections

Matthew Frank Brown; Usa Reilly; Joseph A. Abramite; Robert M. Oliver; Rose Barham; Ye Che; Jinshan Michael Chen; Elizabeth M. Collantes; Seung Won Chung; Charlene R. Desbonnet; Jonathan L. Doty; Matthew Doroski; Juntyma J. Engtrakul; Thomas M. Harris; Michael D. Huband; John D. Knafels; Karen L. Leach; Shenping Liu; Anthony Marfat; Andrea Marra; Eric McElroy; Michael Melnick; Carol A. Menard; Justin Ian Montgomery; Lisa Mullins; Mark C. Noe; John P. O’Donnell; Joseph Penzien; Mark Stephen Plummer; Loren M. Price

In this paper, we present the synthesis and SAR as well as selectivity, pharmacokinetic, and infection model data for representative analogues of a novel series of potent antibacterial LpxC inhibitors represented by hydroxamic acid.


Journal of Medicinal Chemistry | 2012

Pyridone Methylsulfone Hydroxamate LpxC Inhibitors for the Treatment of Serious Gram-Negative Infections

Justin Ian Montgomery; Matthew Frank Brown; Usa Reilly; Loren M. Price; Joseph A. Abramite; Rose Barham; Ye Che; Jinshan Michael Chen; Seung Won Chung; E.M Collantes; Charlene R. Desbonnet; M Doroski; Jonathan L. Doty; J.J Engtrakul; Thomas M. Harris; Michael D. Huband; John D. Knafels; Karen L. Leach; Shenping Liu; Anthony Marfat; Laura A. McAllister; Eric McElroy; Carol A. Menard; Mark J. Mitton-Fry; Lisa Mullins; Mark C. Noe; J O'Donnell; Robert M. Oliver; Joseph Penzien; Mark Stephen Plummer

The synthesis and biological activity of a new series of LpxC inhibitors represented by pyridone methylsulfone hydroxamate 2a is presented. Members of this series have improved solubility and free fraction when compared to compounds in the previously described biphenyl methylsulfone hydroxamate series, and they maintain superior Gram-negative antibacterial activity to comparator agents.


Journal of Medicinal Chemistry | 2009

Identification of a Brain Penetrant PDE9A Inhibitor Utilizing Prospective Design and Chemical Enablement as a Rapid Lead Optimization Strategy

Patrick Robert Verhoest; Caroline Proulx-Lafrance; Michael Corman; Lois K. Chenard; Christopher John Helal; Xinjun Hou; Robin J. Kleiman; Shenping Liu; Eric S. Marr; Frank S. Menniti; Christopher J. Schmidt; Michelle Vanase-Frawley; Anne W. Schmidt; Robert Williams; Frederick R. Nelson; Kari R. Fonseca; Spiros Liras

By use of chemical enablement and prospective design, a novel series of selective, brain penetrant PDE9A inhibitors have been identified that are capable of producing in vivo elevations of brain cGMP.


Journal of Chemical Information and Modeling | 2011

Understanding the Impact of the P-loop Conformation on Kinase Selectivity

Cristiano R. W. Guimarães; Brajesh K. Rai; Michael John Munchhof; Shenping Liu; Jian Wang; Samit Kumar Bhattacharya; Leonard Buckbinder

This work addresses the link between selectivity and an unusual, folded conformation for the P-loop observed initially for MAP4K4 and subsequently for other kinases. Statistical and computational analyses of our crystal structure database demonstrate that inhibitors that induce the P-loop folded conformation tend to be more selective, especially if they take advantage of this specific conformation by interacting more favorably with a conserved Tyr or Phe residue from the P-loop.


Journal of Biological Chemistry | 2012

Crystal Structures of Cholesteryl Ester Transfer Protein in Complex with Inhibitors

Shenping Liu; Anil Mistry; Jennifer M. Reynolds; David B. Lloyd; Matthew C. Griffor; David Austen Perry; Roger Benjamin Ruggeri; Ronald W. Clark; Xiayang Qiu

Background: Human cholesteryl ester transfer protein (CETP) transfers cholesteryl esters from high-density to low-density lipoprotein particles. Results: Crystallographic, mutagenesis, and biochemical studies illuminated inhibition mechanisms of CETP by torcetrapib and a structurally distinct compound, ((2R)-3-{[4-(4-chloro-3-ethylphenoxy)pyrimidin-2-yl][3-(1,1,2,2-tetrafluoroethoxy)benzyl]amino}-1,1,1-trifluoropropan-2-ol. Conclusion: These small molecules inhibit CETP through blocking its lipid tunnel. Significance: Potential polar interactions at compound binding site may be utilized in design of inhibitors with improved physical properties. Human plasma cholesteryl ester transfer protein (CETP) transports cholesteryl ester from the antiatherogenic high-density lipoproteins (HDL) to the proatherogenic low-density and very low-density lipoproteins (LDL and VLDL). Inhibition of CETP has been shown to raise human plasma HDL cholesterol (HDL-C) levels and is potentially a novel approach for the prevention of cardiovascular diseases. Here, we report the crystal structures of CETP in complex with torcetrapib, a CETP inhibitor that has been tested in phase 3 clinical trials, and compound 2, an analog from a structurally distinct inhibitor series. In both crystal structures, the inhibitors are buried deeply within the protein, shifting the bound cholesteryl ester in the N-terminal pocket of the long hydrophobic tunnel and displacing the phospholipid from that pocket. The lipids in the C-terminal pocket of the hydrophobic tunnel remain unchanged. The inhibitors are positioned near the narrowing neck of the hydrophobic tunnel of CETP and thus block the connection between the N- and C-terminal pockets. These structures illuminate the unusual inhibition mechanism of these compounds and support the tunnel mechanism for neutral lipid transfer by CETP. These highly lipophilic inhibitors bind mainly through extensive hydrophobic interactions with the protein and the shifted cholesteryl ester molecule. However, polar residues, such as Ser-230 and His-232, are also found in the inhibitor binding site. An enhanced understanding of the inhibitor binding site may provide opportunities to design novel CETP inhibitors possessing more drug-like physical properties, distinct modes of action, or alternative pharmacological profiles.


Nature Communications | 2013

Crystal structures of interleukin 17A and its complex with IL-17 receptor A

Shenping Liu; Xi Song; Boris A. Chrunyk; Suman Shanker; Lise R. Hoth; Eric S. Marr; Matthew C. Griffor

The constituent polypeptides of the interleukin-17 family form six different homodimeric cytokines (IL-17A-F) and the heterodimeric IL-17A/F. Their interactions with IL-17 receptors A-E (IL-17RA-E) mediate host defenses while also contributing to inflammatory and autoimmune responses. IL-17A and IL-17F both preferentially engage a receptor complex containing one molecule of IL-17RA and one molecule of IL-17RC. More generally, IL-17RA appears to be a shared receptor that pairs with other members of its family to allow signaling of different IL-17 cytokines. Here we report crystal structures of homodimeric IL-17A and its complex with IL-17RA. Binding to IL-17RA at one side of the IL-17A molecule induces a conformational change in the second, symmetry-related receptor site of IL-17A. This change favors, and is sufficient to account for, the selection of a different receptor polypeptide to complete the cytokine-receptor complex. The structural results are supported by biophysical studies with IL-17A variants produced by site-directed mutagenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Structural basis for the catalytic mechanism of human phosphodiesterase 9

Shenping Liu; Mahmoud N. Mansour; Keith S. Dillman; Jose R. Perez; Dennis E. Danley; Paul A. Aeed; Samuel P. Simons; Peter K. LeMotte; Frank S. Menniti

The phosphodiesterases (PDEs) are metal ion-dependent enzymes that regulate cellular signaling by metabolic inactivation of the ubiquitous second messengers cAMP and cGMP. In this role, the PDEs are involved in many biological and metabolic processes and are proven targets of successful drugs for the treatments of a wide range of diseases. However, because of the rapidity of the hydrolysis reaction, an experimental knowledge of the enzymatic mechanisms of the PDEs at the atomic level is still lacking. Here, we report the structures of reaction intermediates accumulated at the reaction steady state in PDE9/crystal and preserved by freeze-trapping. These structures reveal the catalytic process of a PDE and explain the substrate specificity of PDE9 in an actual reaction and the cation requirements of PDEs in general.

Collaboration


Dive into the Shenping Liu's collaboration.

Researchain Logo
Decentralizing Knowledge