Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janet L. Siefert is active.

Publication


Featured researches published by Janet L. Siefert.


Nature | 2008

Biodiversity and biogeography of phages in modern stromatolites and thrombolites

Christelle Desnues; Beltran Rodriguez-Brito; Steve Rayhawk; Scott T. Kelley; Tuong Tran; Matthew Haynes; Hong Liu; Mike Furlan; Linda Wegley; Betty Chau; Yijun Ruan; Dana Hall; Florent E. Angly; Robert Edwards; Linlin Li; Rebecca Vega Thurber; R. Pamela Reid; Janet L. Siefert; Valeria Souza; David L. Valentine; Brandon K. Swan; Mya Breitbart; Forest Rohwer

Viruses, and more particularly phages (viruses that infect bacteria), represent one of the most abundant living entities in aquatic and terrestrial environments. The biogeography of phages has only recently been investigated and so far reveals a cosmopolitan distribution of phage genetic material (or genotypes). Here we address this cosmopolitan distribution through the analysis of phage communities in modern microbialites, the living representatives of one of the most ancient life forms on Earth. On the basis of a comparative metagenomic analysis of viral communities associated with marine (Highborne Cay, Bahamas) and freshwater (Pozas Azules II and Rio Mesquites, Mexico) microbialites, we show that some phage genotypes are geographically restricted. The high percentage of unknown sequences recovered from the three metagenomes (>97%), the low percentage similarities with sequences from other environmental viral (n = 42) and microbial (n = 36) metagenomes, and the absence of viral genotypes shared among microbialites indicate that viruses are genetically unique in these environments. Identifiable sequences in the Highborne Cay metagenome were dominated by single-stranded DNA microphages that were not detected in any other samples examined, including sea water, fresh water, sediment, terrestrial, extreme, metazoan-associated and marine microbial mats. Finally, a marine signature was present in the phage community of the Pozas Azules II microbialites, even though this environment has not been in contact with the ocean for tens of millions of years. Taken together, these results prove that viruses in modern microbialites display biogeographical variability and suggest that they may be derived from an ancient community.


Environmental Microbiology | 2009

Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico.

Mya Breitbart; Ana Hoare; Anthony G. Nitti; Janet L. Siefert; Matthew Haynes; Elizabeth A. Dinsdale; Robert Edwards; Valeria Souza; Forest Rohwer; David J. Hollander

Ancient biologically mediated sedimentary carbonate deposits, including stromatolites and other microbialites, provide insight into environmental conditions on early Earth. The primary limitation to interpreting these records is our lack of understanding regarding microbial processes and the preservation of geochemical signatures in contemporary microbialite systems. Using a combination of metagenomic sequencing and isotopic analyses, this study describes the identity, metabolic potential and chemical processes of microbial communities from living microbialites from Cuatro Ciénegas, Mexico. Metagenomic sequencing revealed a diverse, redox-dependent microbial community associated with the microbialites. The microbialite community is distinct from other marine and freshwater microbial communities, and demonstrates extensive environmental adaptation. The microbialite metagenomes contain a large number of genes involved in the production of exopolymeric substances and the formation of biofilms, creating a complex, spatially structured environment. In addition to the spatial complexity of the biofilm, microbial activity is tightly controlled by sensory and regulatory systems, which allow for coordination of autotrophic and heterotrophic processes. Isotopic measurements of the intracrystalline organic matter demonstrate the importance of heterotrophic respiration of photoautotrophic biomass in the precipitation of calcium carbonate. The genomic and stable isotopic data presented here significantly enhance our evolving knowledge of contemporary biomineralization processes, and are directly applicable to studies of ancient microbialites.


Astrobiology | 2007

Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds.

Nancy Y. Kiang; Antígona Segura; Giovanna Tinetti; Govindjee; Robert E. Blankenship; Martin Cohen; Janet L. Siefert; David Crisp; Victoria S. Meadows

As photosynthesis on Earth produces the primary signatures of life that can be detected astronomically at the global scale, a strong focus of the search for extrasolar life will be photosynthesis, particularly photosynthesis that has evolved with a different parent star. We take previously simulated planetary atmospheric compositions for Earth-like planets around observed F2V and K2V, modeled M1V and M5V stars, and around the active M4.5V star AD Leo; our scenarios use Earths atmospheric composition as well as very low O2 content in case anoxygenic photosynthesis dominates. With a line-by-line radiative transfer model, we calculate the incident spectral photon flux densities at the surface of the planet and under water. We identify bands of available photosynthetically relevant radiation and find that photosynthetic pigments on planets around F2V stars may peak in absorbance in the blue, K2V in the red-orange, and M stars in the near-infrared, in bands at 0.93-1.1 microm, 1.1-1.4 microm, 1.5-1.8 microm, and 1.8-2.5 microm. However, underwater organisms will be restricted to wavelengths shorter than 1.4 microm and more likely below 1.1 microm. M star planets without oxygenic photosynthesis will have photon fluxes above 1.6 microm curtailed by methane. Longer-wavelength, multi-photo-system series would reduce the quantum yield but could allow for oxygenic photosystems at longer wavelengths. A wavelength of 1.1 microm is a possible upper cutoff for electronic transitions versus only vibrational energy; however, this cutoff is not strict, since such energetics depend on molecular configuration. M star planets could be a half to a tenth as productive as Earth in the visible, but exceed Earth if useful photons extend to 1.1 microm for anoxygenic photosynthesis. Under water, organisms would still be able to survive ultraviolet flares from young M stars and acquire adequate light for growth.


Current Microbiology | 2000

Phylogeny of Marine Bacillus Isolates from the Gulf of Mexico

Janet L. Siefert; Maia Larios-Sanz; Lawrence K. Nakamura; Ralph A. Slepecky; John H. Paul; Edward R. B. Moore; George E. Fox; Peter Jurtshuk

The phylogeny of 11 pigmented, aerobic, spore-forming isolates from marine sources was studied. Forty-two biochemical characteristics were examined, and a 16S rDNA sequence was obtained for each isolate. In a phylogenetic tree based on 16S sequencing, four isolates (NRRL B-14850, NRRL B-14904, NRRL B-14907, and NRRL B-14908) clustered with B. subtilis and related organisms; NRRL B-14907 was closely related to B. amyloliquefaciens. NRRL B-14907 and NRRL B-14908 were phenotypically similar to B. amyloliquefaciens and B. pumilus, respectively. Three strains (NRRL B-14906, NRRL B-14910, and NRRL B-14911) clustered in a clade that included B. firmus, B. lentus, and B. megaterium. NRRL B-14910 was closely related phenotypically and phylogenetically to B. megaterium. NRRL B-14905 clustered with the mesophilic round spore-producing species, B. fusiformis and B. sphaericus; the isolate was more closely related to B. fusiformis. NRRL B-14905 displayed characteristics typical of the B. sphaericus-like organisms. NRRL B-14909 and NRRL B-14912 clustered with the Paenibacillus species and displayed characteristics typical of the genus. Only NRRL B-14851, an unusually thin rod that forms very small spores, may represent a new Bacillus species.


Origins of Life and Evolution of Biospheres | 2001

A coupled ecosystem-climate model for predicting the methane concentration in the Archean atmosphere.

James F. Kasting; Alexander Anatolevich Pavlov; Janet L. Siefert

A simple coupled ecosystem-climate model is described that canpredict levels of atmospheric CH4, CO2, and H2during the Late Archean, given observed constraints on Earthssurface temperature. We find that methanogenic bacteria shouldhave converted most of the available atmospheric H2 intoCH4, and that CH4 may have been equal in importance to CO2 as a greenhouse gas. Photolysis of this CH4 may have produced a hydrocarbon smog layer that would have shielded the surface from solar UV radiation. Methanotrophic bacteria would have consumed some of the atmospheric CH4,but they would have been incapable of reducing CH4 to modern levels. The rise of O2 around 2.3 Ga would have drastically reduced the atmospheric CH4 concentrationand may thereby have triggered the Huronian glaciation.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The genome of Bacillus coahuilensis reveals adaptations essential for survival in the relic of an ancient marine environment

Luis David Alcaraz; Gabriela Olmedo; Germán Bonilla; René Cerritos; Gustavo Hernández; Alfredo Cruz; Enrique Ramírez; Catherine Putonti; Beatriz Jiménez; Eva Martínez; Varinia López; Jacqueline L. Arvizu; Francisco J. Ayala; Francisco Razo; Juan Caballero; Janet L. Siefert; Luis E. Eguiarte; Jean-Philippe Vielle; Octavio Martínez; Valeria Souza; Alfredo Herrera-Estrella; Luis Herrera-Estrella

The Cuatro Ciénegas Basin (CCB) in the central part of the Chihuahan desert (Coahuila, Mexico) hosts a wide diversity of microorganisms contained within springs thought to be geomorphological relics of an ancient sea. A major question remaining to be answered is whether bacteria from CCB are ancient marine bacteria that adapted to an oligotrophic system poor in NaCl, rich in sulfates, and with extremely low phosphorus levels (<0.3 μM). Here, we report the complete genome sequence of Bacillus coahuilensis, a sporulating bacterium isolated from the water column of a desiccation lagoon in CCB. At 3.35 Megabases this is the smallest genome sequenced to date of a Bacillus species and provides insights into the origin, evolution, and adaptation of B. coahuilensis to the CCB environment. We propose that the size and complexity of the B. coahuilensis genome reflects the adaptation of an ancient marine bacterium to a novel environment, providing support to a “marine isolation origin hypothesis” that is consistent with the geology of CCB. This genomic adaptation includes the acquisition through horizontal gene transfer of genes involved in phosphorous utilization efficiency and adaptation to high-light environments. The B. coahuilensis genome sequence also revealed important ecological features of the bacterial community in CCB and offers opportunities for a unique glimpse of a microbe-dominated world last seen in the Precambrian.


Methods of Molecular Biology | 2009

Defining the Mobilome

Janet L. Siefert

This chapter defines the agents that provide for the movement of genetic material which fuels the adaptive potential of life on our planet. The chapter has been structured to be broadly comprehensive, arbitrarily categorizing the mobilome into four classes: (1) transposons, (2) plasmids, (3) bacteriophage, and (4) self-splicing molecular parasites.Our increasing understanding of the mobilome is as dynamic as the mobilome itself. With continuing discovery, it is clear that nature has not confined these genomic agents of change to neat categories, but rather the classification categories overlap and intertwine. Massive sequencing efforts and their published analyses are continuing to refine our understanding of the extent of the mobilome. This chapter provides a framework to describe our current understanding of the mobilome and a foundation on which appreciation of its impact on genome evolution can be understood.


Nature Reviews Microbiology | 2008

Microbial endemism: does phosphorus limitation enhance speciation?

Valeria Souza; Luis E. Eguiarte; Janet L. Siefert; James J. Elser

There is increasing evidence for the existence of unique ecosystems that are dominated by locally adapted microbiota which harbour distinct lineages and biological capabilities, much like the macrobiota of Darwins Galapagos Islands. As a primary example of such a system, we highlight key discoveries from the Cuatro Ciénegas basin in Mexico. We argue that high microbial endemism requires a combination of geographical isolation, long-term continuity and mechanisms for reducing the intensity of horizontal gene transfer (HGT). We also propose that strong phosphorus limitation has an important role in microbial diversification by reducing the intensity of HGT.


Microbiology | 1998

Phylogenetic mapping of bacterial morphology

Janet L. Siefert; George E. Fox

The availability of a meaningful molecular phylogeny for bacteria provides a context for examining the historical significance of various developments in bacterial evolution. Herein, the classical morphological descriptions of selected members of the domain Bacteria are mapped upon the genealogical ancestry deduced from comparison of small-subunit rRNA sequences. For the species examined in this study, a distinct pattern emerges which indicates that the coccus shape has arisen and accumulated independently multiple times in separate lineages and typically survived as a persistent end-state morphology. At least two other morphologies persist but have evolved only once. This study demonstrates that although bacterial morphology is not useful in defining bacterial phylogeny, it is remarkably consistent with that phylogeny once it is known. An examination of the experimental evidence available for morphogenesis as well as microbial fossil evidence corroborates these findings. It is proposed that the accumulation of persistent morphologies is a result of the biophysical properties of peptidoglycan and their genetic control, and that an evolved body-plan strategy based on peptidoglycan may have been a fate-sealing step in the evolution of Bacteria. More generally, this study illustrates that significant evolutionary insights can be obtained by examining biological and biochemical data in the context of a reliable phylogenetic structure.


Journal of Molecular Evolution | 1997

Conserved Gene Clusters in Bacterial Genomes Provide Further Support for the Primacy of RNA

Janet L. Siefert; Kirt Martin; Fadi Abdi; William R. Widger; George E. Fox

Abstract. Five complete bacterial genome sequences have been released to the scientific community. These include four (eu)Bacteria, Haemophilus influenzae, Mycoplasma genitalium, M. pneumoniae, and Synechocystis PCC 6803, as well as one Archaeon, Methanococcus jannaschii. Features of organization shared by these genomes are likely to have arisen very early in the history of the bacteria and thus can be expected to provide further insight into the nature of early ancestors. Results of a genome comparison of these five organisms confirm earlier observations that gene order is remarkably unpreserved. There are, nevertheless, at least 16 clusters of two or more genes whose order remains the same among the four (eu)Bacteria and these are presumed to reflect conserved elements of coordinated gene expression that require gene proximity. Eight of these gene orders are essentially conserved in the Archaea as well. Many of these clusters are known to be regulated by RNA-level mechanisms in Escherichia coli, which supports the earlier suggestion that this type of regulation of gene expression may have arisen very early. We conclude that although the last common ancestor may have had a DNA genome, it likely was preceded by progenotes with an RNA genome.

Collaboration


Dive into the Janet L. Siefert's collaboration.

Top Co-Authors

Avatar

Valeria Souza

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis E. Eguiarte

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Mya Breitbart

Scripps Institution of Oceanography

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony G. Nitti

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

David J. Hollander

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

James F. Kasting

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Robert E. Blankenship

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Forest Rohwer

San Diego State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge