Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George E. Fox is active.

Publication


Featured researches published by George E. Fox.


International Journal of Systematic and Evolutionary Microbiology | 1992

How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity

George E. Fox; Jeffrey D. Wisotzkey; Peter Jurtshuk

16S rRNA (genes coding for rRNA) sequence comparisons were conducted with the following three psychrophilic strains: Bacillus globisporus W25T (T = type strain) and Bacillus psychrophilus W16AT, and W5. These strains exhibited more than 99.5% sequence identity and within experimental uncertainty could be regarded as identical. Their close taxonomic relationship was further documented by phenotypic similarities. In contrast, previously published DNA-DNA hybridization results have convincingly established that these strains do not belong to the same species if current standards are used. These results emphasize the important point that effective identity of 16S rRNA sequences is not necessarily a sufficient criterion to guarantee species identity. Thus, although 16S rRNA sequences can be used routinely to distinguish and establish relationships between genera and well-resolved species, very recently diverged species may not be recognizable.


Systematic and Applied Microbiology | 1984

The phylogeny of purple bacteria: The alpha subdivision

Carl R. Woese; Erko Stackebrandt; William G. Weisburg; Bruce J. Paster; Michael T. Madigan; Valerie J. Fowler; Christine M. Hahn; Paul Blanz; Ramesh Gupta; Kenneth H. Nealson; George E. Fox

The technique of oligonucleotide cataloging shows the purple photosynthetic eubacteria to comprise three major subdivisions, temporarily called alpha, beta, and gamma--previously designated groups I-III by Gibson et al. (1979). Each subdivision contains a number of non-photosynthetic genera in addition to the photosynthetic ones. The alpha subdivision, the subject of the present report, contains most but not all of the species that fall into the classically defined genera Rhodospirillum, Rhodopseudomonas and Rhodomicrobium. Intermingled with these are a variety of non-photosynthetic species from genera such as Agrobacterium, Rhizobium, Azospirillum, Nitrobacter, Erythrobacter, Phenylobacterium, Aquaspirillum, and Paracoccus. The phylogenetic substructure of the alpha subdivision is presented and the evolutionary significance of the admixture of biochemical phenotypes is discussed.


International Journal of Systematic and Evolutionary Microbiology | 1992

Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov

Jeffrey D. Wisotzkey; Peter Jurtshuk; George E. Fox; Gabriele Deinhard; Karl Poralla

Comparative 16S rRNA (rDNA) sequence analyses performed on the thermophilic Bacillus species Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus revealed that these organisms are sufficiently different from the traditional Bacillus species to warrant reclassification in a new genus, Alicyclobacillus gen. nov. An analysis of 16S rRNA sequences established that these three thermoacidophiles cluster in a group that differs markedly from both the obligately thermophilic organisms Bacillus stearothermophilus and the facultatively thermophilic organism Bacillus coagulans, as well as many other common mesophilic and thermophilic Bacillus species. The thermoacidophilic Bacillus species B. acidocaldarius, B. acidoterrestris, and B. cycloheptanicus also are unique in that they possess omega-alicylic fatty acid as the major natural membranous lipid component, which is a rare phenotype that has not been found in any other Bacillus species characterized to date. This phenotype, along with the 16S rRNA sequence data, suggests that these thermoacidophiles are biochemically and genetically unique and supports the proposal that they should be reclassified in the new genus Alicyclobacillus.


Nature | 1975

5S RNA secondary structure.

George E. Fox; Carl R. Woese

NUMEROUS attempts have been made to deduce a secondary structure of 5S RNA1–4. Differing approaches have yielded various structures, but each turns out to be inconsistent with either physical, chemical, biochemical, or comparative evidence. Clearly the situation is not analogous to that which obtained for transfer RNA (tRNA). There is, however, at least one fundamental difference between the two molecules. The functional 5S RNA molecule is at all times an integral part of the 50S ribosomal subunit, whereas tRNA is a transient inhabitant of the ribosome milieu. Thus, it is possible that functional conformations of the 5S RNA molecule need only exist in the context of the ribosome, and consequently, may only exist therein. Thus, the interpretation of experimental investigations on the isolated 5S RNA molecule may have inherent difficulties.


Systematic and Applied Microbiology | 1985

A phylogenetic definition of the major eubacterial taxa.

Carl R. Woese; Erko Stackebrandt; T.J. Macke; George E. Fox

Through oligonucleotide signature analysis of 16S ribosomal RNAs, it is possible to define ten major groups of eubacteria. These are: (1) the Gram positive bacteria, (2) the purple photosynthetic bacteria and their relatives, (3) the spirochetes and their relatives, (4) the sulfur-dependent eubacteria and their relatives, (5) the bacteroides, flavobacteria and cytophagas and their relatives, (6) the cyanobacteria, (7) the green sulfur bacteria, (8) the green non-sulfur bacteria and their relatives, (9) the radio-resistant micrococci, and (10) the planctomyces and their relatives. Although no consensus exists as regards the taconomic terminology, these ten groupings are appropriately termed eubacterial Phyla or Divisions. The major subdivisions of those Phyla or Divisions that have been extensively characterized can also be defined by characteristic oligonucleotide signatures.


BMC Microbiology | 2007

Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus

Sarah K. Highlander; Kristina G. Hulten; Xiang Qin; Huaiyang Jiang; Shailaja Yerrapragada; Edward O. Mason; Yue Shang; Tiffany M. Williams; Régine M Fortunov; Yamei Liu; Okezie Igboeli; Joseph F. Petrosino; Madhan R. Tirumalai; Akif Uzman; George E. Fox; Ana Maria Cardenas; Donna M. Muzny; Lisa Hemphill; Yan Ding; Shannon Dugan; Peter R Blyth; Christian Buhay; Huyen Dinh; Alicia Hawes; Michael Holder; Christie Kovar; Sandra L. Lee; Wen Liu; Lynne V. Nazareth; Qiaoyan Wang

BackgroundCommunity acquired (CA) methicillin-resistant Staphylococcus aureus (MRSA) increasingly causes disease worldwide. USA300 has emerged as the predominant clone causing superficial and invasive infections in children and adults in the USA. Epidemiological studies suggest that USA300 is more virulent than other CA-MRSA. The genetic determinants that render virulence and dominance to USA300 remain unclear.ResultsWe sequenced the genomes of two pediatric USA300 isolates: one CA-MRSA and one CA-methicillin susceptible (MSSA), isolated at Texas Childrens Hospital in Houston. DNA sequencing was performed by Sanger dideoxy whole genome shotgun (WGS) and 454 Life Sciences pyrosequencing strategies. The sequence of the USA300 MRSA strain was rigorously annotated. In USA300-MRSA 2658 chromosomal open reading frames were predicted and 3.1 and 27 kilobase (kb) plasmids were identified. USA300-MSSA contained a 20 kb plasmid with some homology to the 27 kb plasmid found in USA300-MRSA. Two regions found in US300-MRSA were absent in USA300-MSSA. One of these carried the arginine deiminase operon that appears to have been acquired from S. epidermidis. The USA300 sequence was aligned with other sequenced S. aureus genomes and regions unique to USA300 MRSA were identified.ConclusionUSA300-MRSA is highly similar to other MRSA strains based on whole genome alignments and gene content, indicating that the differences in pathogenesis are due to subtle changes rather than to large-scale acquisition of virulence factor genes. The USA300 Houston isolate differs from another sequenced USA300 strain isolate, derived from a patient in San Francisco, in plasmid content and a number of sequence polymorphisms. Such differences will provide new insights into the evolution of pathogens.


Journal of Bacteriology | 2004

Complete Genome Sequence of Rickettsia typhi and Comparison with Sequences of Other Rickettsiae

Michael P. McLeod; Xiang Qin; Sandor E. Karpathy; Jason Gioia; Sarah K. Highlander; George E. Fox; Thomas Z. McNeill; Huaiyang Jiang; Donna M. Muzny; Leni S. Jacob; Alicia Hawes; Erica Sodergren; Rachel Gill; Jennifer Hume; Maggie Morgan; Guangwei Fan; Anita G. Amin; Richard A. Gibbs; Chao Hong; Xue Jie Yu; David H. Walker; George M. Weinstock

Rickettsia typhi, the causative agent of murine typhus, is an obligate intracellular bacterium with a life cycle involving both vertebrate and invertebrate hosts. Here we present the complete genome sequence of R. typhi (1,111,496 bp) and compare it to the two published rickettsial genome sequences: R. prowazekii and R. conorii. We identified 877 genes in R. typhi encoding 3 rRNAs, 33 tRNAs, 3 noncoding RNAs, and 838 proteins, 3 of which are frameshifts. In addition, we discovered more than 40 pseudogenes, including the entire cytochrome c oxidase system. The three rickettsial genomes share 775 genes: 23 are found only in R. prowazekii and R. typhi, 15 are found only in R. conorii and R. typhi, and 24 are unique to R. typhi. Although most of the genes are colinear, there is a 35-kb inversion in gene order, which is close to the replication terminus, in R. typhi, compared to R. prowazekii and R. conorii. In addition, we found a 124-kb R. typhi-specific inversion, starting 19 kb from the origin of replication, compared to R. prowazekii and R. conorii. Inversions in this region are also seen in the unpublished genome sequences of R. sibirica and R. rickettsii, indicating that this region is a hot spot for rearrangements. Genome comparisons also revealed a 12-kb insertion in the R. prowazekii genome, relative to R. typhi and R. conorii, which appears to have occurred after the typhus (R. prowazekii and R. typhi) and spotted fever (R. conorii) groups diverged. The three-way comparison allowed further in silico analysis of the SpoT split genes, leading us to propose that the stringent response system is still functional in these rickettsiae.


PLOS ONE | 2007

Paradoxical DNA Repair and Peroxide Resistance Gene Conservation in Bacillus pumilus SAFR-032

Jason Gioia; Shailaja Yerrapragada; Xiang Qin; Huaiyang Jiang; Okezie Igboeli; Donna M. Muzny; Shannon Dugan-Rocha; Yan Ding; Alicia Hawes; Wen Liu; Lesette Perez; Christie Kovar; Huyen Dinh; Sandra L. Lee; Lynne V. Nazareth; Peter R Blyth; Michael Holder; Christian Buhay; Madhan R. Tirumalai; Yamei Liu; Indrani Dasgupta; Lina Bokhetache; Masaya Fujita; Fathi Karouia; Prahathees Eswara Moorthy; Johnathan Siefert; Akif Uzman; Prince Buzumbo; Avani Verma; Hiba Zwiya

Background Bacillus spores are notoriously resistant to unfavorable conditions such as UV radiation, γ-radiation, H2O2, desiccation, chemical disinfection, or starvation. Bacillus pumilus SAFR-032 survives standard decontamination procedures of the Jet Propulsion Lab spacecraft assembly facility, and both spores and vegetative cells of this strain exhibit elevated resistance to UV radiation and H2O2 compared to other Bacillus species. Principal Findings The genome of B. pumilus SAFR-032 was sequenced and annotated. Lists of genes relevant to DNA repair and the oxidative stress response were generated and compared to B. subtilis and B. licheniformis. Differences in conservation of genes, gene order, and protein sequences are highlighted because they potentially explain the extreme resistance phenotype of B. pumilus. The B. pumilus genome includes genes not found in B. subtilis or B. licheniformis and conserved genes with sequence divergence, but paradoxically lacks several genes that function in UV or H2O2 resistance in other Bacillus species. Significance This study identifies several candidate genes for further research into UV and H2O2 resistance. These findings will help explain the resistance of B. pumilus and are applicable to understanding sterilization survival strategies of microbes.


International Journal of Systematic and Evolutionary Microbiology | 1988

Methanohalophilus zhilinae sp. nov., an Alkaliphilic, Halophilic, Methylotrophic Methanogen

Indra M. Mathrani; David R. Boone; Robert A. Mah; George E. Fox; Paul P. Lau

Methanohalophilus zhilinae, a new alkaliphilic, halophilic, methylotrophic species of methanogenic bacteria, is described. Strain WeN5T (T = type strain) from Bosa Lake of the Wadi el Natrun in Egypt was designated the type strain and was further characterized. This strain was nonmotile, able to catabolize dimethylsulfide, and able to grow in medium with a methyl group-containing substrate (such as methanol or trimethylamine) as the sole organic compound added. Sulfide (21 mM) inhibited cultures growing on trimethylamine. The antibiotic susceptibility pattern of strain WeN5T was typical of the pattern for archaeobacteria, and the guanine-plus-cytosine content of the deoxyribonucleic acid was 38 mol%. Characterization of the 16S ribosomal ribonucleic acid sequence indicated that strain WeN5T is phylogenetically distinct from members of previously described genera other than Methanohalophilus and supported the partition of halophilic methanogens into their own genus.


Nature Biotechnology | 1999

Purification of plasmid DNA using selective precipitation by compaction agents

Jason C. Murphy; Jamie A. Wibbenmeyer; George E. Fox; Richard C. Willson

A scaleable method for the liquid-phase separation of plasmid DNA from RNA.

Collaboration


Dive into the George E. Fox's collaboration.

Top Co-Authors

Avatar

Yuriy Fofanov

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yamei Liu

University of Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge