Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janet Leatherwood is active.

Publication


Featured researches published by Janet Leatherwood.


Science | 2011

Comparative Functional Genomics of the Fission Yeasts

Nicholas Rhind; Zehua Chen; Moran Yassour; Dawn Anne Thompson; Brian J. Haas; Naomi Habib; Ilan Wapinski; Sushmita Roy; Michael F. Lin; David I. Heiman; Sarah K. Young; Kanji Furuya; Yabin Guo; Alison L. Pidoux; Huei Mei Chen; Barbara Robbertse; Jonathan M. Goldberg; Keita Aoki; Elizabeth H. Bayne; Aaron M. Berlin; Christopher A. Desjardins; Edward Dobbs; Livio Dukaj; Lin Fan; Michael Fitzgerald; Courtney French; Sharvari Gujja; Klavs Wörgler Hansen; Daniel Keifenheim; Joshua Z. Levin

A combined analysis of genome sequence, structure, and expression gives insights into fission yeast biology. The fission yeast clade—comprising Schizosaccharomyces pombe, S. octosporus, S. cryophilus, and S. japonicus—occupies the basal branch of Ascomycete fungi and is an important model of eukaryote biology. A comparative annotation of these genomes identified a near extinction of transposons and the associated innovation of transposon-free centromeres. Expression analysis established that meiotic genes are subject to antisense transcription during vegetative growth, which suggests a mechanism for their tight regulation. In addition, trans-acting regulators control new genes within the context of expanded functional modules for meiosis and stress response. Differences in gene content and regulation also explain why, unlike the budding yeast of Saccharomycotina, fission yeasts cannot use ethanol as a primary carbon source. These analyses elucidate the genome structure and gene regulation of fission yeast and provide tools for investigation across the Schizosaccharomyces clade.


PLOS Biology | 2005

The cell cycle–regulated genes of schizosaccharomyces pombe

Anna Oliva; Adam Rosebrock; Francisco Ferrezuelo; Saumyadipta Pyne; Haiying Chen; Steve Skiena; Bruce Futcher; Janet Leatherwood

Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast). The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know.


BMC Biology | 2005

PCI proteins eIF3e and eIF3m define distinct translation initiation factor 3 complexes

Chunshui Zhou; Fatih Arslan; Susan Wee; Srinivasan C. Krishnan; Alexander R. Ivanov; Anna Oliva; Janet Leatherwood; Dieter A. Wolf

BackgroundPCI/MPN domain protein complexes comprise the 19S proteasome lid, the COP9 signalosome (CSN), and eukaryotic translation initiation factor 3 (eIF3). The eIF3 complex is thought to be composed of essential core subunits required for global protein synthesis and non-essential subunits that may modulate mRNA specificity. Interactions of unclear significance were reported between eIF3 subunits and PCI proteins contained in the CSN.ResultsHere, we report the unexpected finding that fission yeast has two distinct eIF3 complexes sharing common core subunits, but distinguished by the PCI proteins eIF3e and the novel eIF3m, which was previously annotated as a putative CSN subunit. Whereas neither eIF3e nor eIF3m contribute to the non-essential activities of CSN in cullin-RING ubiquitin ligase control, eif3m, unlike eif3e, is an essential gene required for global cellular protein synthesis and polysome formation. Using a ribonomic approach, this phenotypic distinction was correlated with a different set of mRNAs associated with the eIF3e and eIF3m complexes. Whereas the eIF3m complex appears to associate with the bulk of cellular mRNAs, the eIF3e complex associates with a far more restricted set. The microarray findings were independently corroborated for a random set of 14 mRNAs by RT-PCR analysis.ConclusionWe propose that the PCI proteins eIF3e and eIF3m define distinct eIF3 complexes that may assist in the translation of different sets of mRNAs.


Molecular Cell | 2009

TFIIH and P-TEFb Coordinate Transcription with Capping Enzyme Recruitment at Specific Genes in Fission Yeast

Laia Viladevall; Courtney V. St. Amour; Adam Rosebrock; Susanne Schneider; Chao Zhang; Jasmina J. Allen; Kevan M. Shokat; Beate Schwer; Janet Leatherwood; Robert P. Fisher

Cyclin-dependent kinases (CDKs) are subunits of transcription factor (TF) IIH and positive transcription elongation factor b (P-TEFb). To define their functions, we mutated the TFIIH-associated kinase Mcs6 and P-TEFb homologs Cdk9 and Lsk1 of fission yeast, making them sensitive to inhibition by bulky purine analogs. Selective inhibition of Mcs6 or Cdk9 blocks cell division, alters RNA polymerase (Pol) II carboxyl-terminal domain (CTD) phosphorylation, and represses specific, overlapping subsets of transcripts. At a common target gene, both CDKs must be active for normal Pol II occupancy, and Spt5-a CDK substrate and regulator of elongation-accumulates disproportionately to Pol II when either kinase is inhibited. In contrast, Mcs6 activity is sufficient-and necessary-to recruit the Cdk9/Pcm1 (mRNA cap methyltransferase) complex. In vitro, phosphorylation of the CTD by Mcs6 stimulates subsequent phosphorylation by Cdk9. We propose that TFIIH primes the CTD and promotes recruitment of P-TEFb/Pcm1, serving to couple elongation and capping of select pre-mRNAs.


Molecular and Cellular Biology | 2001

Control of DNA Rereplication via Cdc2 Phosphorylation Sites in the Origin Recognition Complex

Amit Vas; Winnie Mok; Janet Leatherwood

ABSTRACT Cdc2 kinase is a master regulator of cell cycle progression in the fission yeast Schizosaccharomyces pombe. Our data indicate that Cdc2 phosphorylates replication factor Orp2, a subunit of the origin recognition complex (ORC). Cdc2 phosphorylation of Orp2 appears to be one of multiple mechanisms by which Cdc2 prevents DNA rereplication in a single cell cycle. Cdc2 phosphorylation of Orp2 is not required for Cdc2 to activate DNA replication initiation. Phosphorylation of Orp2 appears first in S phase and becomes maximal in G2 and M when Cdc2 kinase activity is required to prevent reinitiation of DNA replication. A mutant lacking Cdc2 phosphorylation sites in Orp2 (orp2-T4A) allowed greater rereplication of DNA than congenic orp2 wild-type strains when the limiting replication initiation factor Cdc18 was deregulated. Thus, Cdc2 phosphorylation of Orp2 may be redundant with regulation of Cdc18 for preventing reinitiation of DNA synthesis. Since Cdc2 phosphorylation sites are present in Orp2 (also known as Orc2) from yeasts to metazoans, we propose that cell cycle-regulated phosphorylation of the ORC provides a safety net to prevent DNA rereplication and resulting genetic instability.


Molecular Biology of the Cell | 2008

The Hsk1(Cdc7) Replication Kinase Regulates Origin Efficiency

Prasanta K. Patel; Naveen Kommajosyula; Adam Rosebrock; Aaron Bensimon; Janet Leatherwood; John Bechhoefer; Nicholas Rhind

Origins of DNA replication are generally inefficient, with most firing in fewer than half of cell cycles. However, neither the mechanism nor the importance of the regulation of origin efficiency is clear. In fission yeast, origin firing is stochastic, leading us to hypothesize that origin inefficiency and stochasticity are the result of a diffusible, rate-limiting activator. We show that the Hsk1-Dfp1 replication kinase (the fission yeast Cdc7-Dbf4 homologue) plays such a role. Increasing or decreasing Hsk1-Dfp1 levels correspondingly increases or decreases origin efficiency. Furthermore, tethering Hsk1-Dfp1 near an origin increases the efficiency of that origin, suggesting that the effective local concentration of Hsk1-Dfp1 regulates origin firing. Using photobleaching, we show that Hsk1-Dfp1 is freely diffusible in the nucleus. These results support a model in which the accessibility of replication origins to Hsk1-Dfp1 regulates origin efficiency and provides a potential mechanistic link between chromatin structure and replication timing. By manipulating Hsk1-Dfp1 levels, we show that increasing or decreasing origin firing rates leads to an increase in genomic instability, demonstrating the biological importance of appropriate origin efficiency.


Current Biology | 2002

Control of replication timing by a transcriptional silencer.

David C. Zappulla; Rolf Sternglanz; Janet Leatherwood

BACKGROUND Eukaryotic DNA replication starts at many origins. Some origins are used early in S phase, while others are programmed to fire later. In general, late replication is correlated with transcriptional inactivity and with location near the nuclear periphery. However, the mechanisms that determine replication timing are unclear, and the cause-and-effect relationship between late replication, transcriptional inactivity, and location at the nuclear periphery is unknown. RESULTS Using budding yeast, we show that a transcriptional silencer, HMR-E, can reset the time of initiation of ARS305 from early to late. This resetting requires Sir proteins, which are silencers of transcription. Resetting can also be achieved by targeting Sir4 to ARS305. HMR-E sequences and targeted Sir4, both of which cause late replication of ARS305, also cause transcriptional silencing of the nearby APA1 gene. CONCLUSIONS Sir proteins are sufficient to reprogram an origin from early to late; that is, Sir proteins are a cause of late replication. Presumably, the tight chromatin structure promoted by Sir proteins favors both transcriptional inactivity and late replication.


Nature Structural & Molecular Biology | 2009

A complex gene regulatory mechanism that operates at the nexus of multiple RNA processing decisions

David S. McPheeters; Nicole Cremona; Sham Sunder; Huei Mei Chen; Nicole Averbeck; Janet Leatherwood; Jo Ann Wise

Expression of crs1 pre-mRNA, encoding a meiotic cyclin, is blocked in actively growing fission yeast cells by a multifaceted mechanism. The most striking feature is that in vegetative cells, crs1 transcripts are continuously synthesized but are targeted for degradation rather than splicing and polyadenylation. Turnover of crs1 RNA requires the exosome, as do previously described nuclear surveillance and silencing mechanisms, but does not involve a noncanonical poly(A) polymerase. Instead, crs1 transcripts are targeted for destruction by a factor previously implicated in turnover of meiotic RNAs in growing cells. Like exosome mutants, mmi1 mutants splice and polyadenylate vegetative crs1 transcripts. Two regulatory elements are located at the 3′ end of the crs1 gene, consistent with the increased accumulation of spliced RNA in polyadenylation factor mutants. This highly integrated regulatory strategy may ensure a rapid response to adverse conditions, thereby guaranteeing survival.


Molecular and Cellular Biology | 2008

The DNA replication checkpoint directly regulates MBF-dependent G1/S transcription.

Chaitali Dutta; Prasanta K. Patel; Adam Rosebrock; Anna Oliva; Janet Leatherwood; Nicholas Rhind

ABSTRACT The DNA replication checkpoint transcriptionally upregulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G1/S transcriptional program by directly regulating MBF, the G1/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G1/S transcriptional program during replication stress. We propose a mechanism for this regulation, based on in vitro phosphorylation of the Cdc10 subunit of MBF by the Cds1 replication-checkpoint kinase. Replacement of two potential phosphorylation sites with phosphomimetic amino acids suffices to promote the checkpoint transcriptional program, suggesting that Cds1 phosphorylation directly regulates MBF-dependent transcription. The conservation of MBF between fission and budding yeast, and recent results implicating MBF as a target of the budding yeast replication checkpoint, suggests that checkpoint regulation of the MBF transcription factor is a conserved strategy for coping with replication stress. Furthermore, the structural and regulatory similarity between MBF and E2F, the metazoan G1/S transcription factor, suggests that this checkpoint mechanism may be broadly conserved among eukaryotes.


BMC Molecular Biology | 2007

Checkpoint independence of most DNA replication origins in fission yeast

Katie L Mickle; Sunita Ramanathan; Adam Rosebrock; Anna Oliva; Amna Chaudari; Chulee Yompakdee; Donna Scott; Janet Leatherwood; Joel A. Huberman

BackgroundIn budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2).ResultsOur microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in checkpoint-mutant cells.ConclusionThe fact that ~97% of fission yeast replication origins – both early and late – are not significantly affected by replication checkpoint mutations in HU-treated cells suggests that (i) most late-firing origins are restrained from firing in HU-treated cells by at least one checkpoint-independent mechanism, and (ii) checkpoint-dependent slowing of S phase in fission yeast when DNA is damaged may be accomplished primarily by the slowing of replication forks.

Collaboration


Dive into the Janet Leatherwood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Oliva

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar

Amit Vas

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Nicholas Rhind

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jo Ann Wise

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge