Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jani Aro is active.

Publication


Featured researches published by Jani Aro.


Biochemical and Biophysical Research Communications | 2008

Thrombospondin-4 expression is rapidly upregulated by cardiac overload

Erja Mustonen; Jani Aro; Jutta Puhakka; Mika Ilves; Ylermi Soini; Hanna Leskinen; Heikki Ruskoaho; Jaana Rysä

The precise mechanisms regulating gene expression of thrombospondins (TSPs) in the heart remain incompletely understood. Here we characterized cardiac TSP-4 expression in response to pressure overload and myocardial infarction in vivo. Arginine(8)-vasopressin (AVP) infusion increased left ventricular (LV) TSP-4 mRNA levels within 30 min. Also angiotensin II infusion rapidly activated LV TSP-4 expression, TSP-4 mRNA levels being highest at 6h and protein at 72 h and 2 weeks. During remodeling process following myocardial infarction, LV TSP-4 mRNA levels increased at day one, as studied by quantitative RT-PCR. TSP-4 immunostaining was localized to endothelial cells in hypertrophied hearts of spontaneously hypertensive rats. AVP-infusion increased LV TSP-1 mRNA levels similarly to TSP-4 within 30 min showing that rapid induction of gene expression, well before the development of cardiac hypertrophy, is typical for the thrombospondin family. These results further suggest that TSP-4 may be an endothelial specific marker of cardiac overload.


Acta Physiologica | 2010

Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 during cardiac remodelling in rats.

E. Mustonen; H. Säkkinen; Heikki Tokola; E. Isopoussu; Jani Aro; H. Leskinen; Heikki Ruskoaho; Jaana Rysä

Aim:  Accumulating evidence supports the concept that proinflammatory cytokines play an essential role in the failing heart. We examined the concomitant tumour necrosis factor‐like weak inducer of apoptosis (TWEAK)/Fn14 expression in myocytes in vitro as well as in vivo in cardiac remodelling.


Circulation-heart Failure | 2011

Intramyocardial BNP Gene Delivery Improves Cardiac Function Through Distinct Context-Dependent Mechanisms

Anne-Mari Moilanen; Jaana Rysä; Erja Mustonen; Raisa Serpi; Jani Aro; Heikki Tokola; Hanna Leskinen; Aki Manninen; Jouko Levijoki; Olli Vuolteenaho; Heikki Ruskoaho

Background—B-type natriuretic peptide (BNP) is an endogenous peptide produced under physiological and pathological conditions mainly by ventricular myocytes. It has natriuretic, diuretic, blood pressure–lowering, and antifibrotic actions that could mediate cardiorenal protection in cardiovascular diseases. In the present study, we used BNP gene transfer to examine functional and structural effects of BNP on left ventricular (LV) remodeling. Methods and Results—Human BNP was overexpressed by using adenovirus-mediated gene delivery in normal rat hearts and in hearts during the remodeling process after infarction and in an experimental model of angiotensin II–mediated hypertension. In healthy hearts, BNP gene delivery into the anterior wall of the LV decreased myocardial fibrosis (P<0.01, n=7 to 8) and increased capillary density (P<0.05, n=7 to 8) associated with a 7.3-fold increase in LV BNP peptide levels. Overexpression of BNP improved LV fractional shortening by 22% (P<0.05, n=6 to 7) and ejection fraction by 19% (P<0.05, n=6 to 7) after infarction. The favorable effect of BNP gene delivery on cardiac function after infarction was associated with normalization of cardiac sarcoplasmic reticulum Ca2+-ATPase expression and phospholamban Thr17-phosphorylation. BNP gene delivery also improved fractional shortening and ejection fraction in angiotensin II–mediated hypertension as well as decreased myocardial fibrosis and LV collagen III mRNA levels but had no effect on angiogenesis or Ca2+-ATPase expression and phospholamban phosphorylation. Conclusions—Local intramyocardial BNP gene delivery improves cardiac function and attenuates adverse postinfarction and angiotensin II–induced remodeling. These results also indicate that myocardial BNP has pleiotropic, context-dependent, favorable actions on cardiac function and suggest that BNP acts locally as a key mechanical load–activated regulator of angiogenesis and fibrosis.


PLOS ONE | 2012

(Pro)renin receptor triggers distinct angiotensin II-independent extracellular matrix remodeling and deterioration of cardiac function.

Anne-Mari Moilanen; Jaana Rysä; Raisa Serpi; Erja Mustonen; Zoltan Szabo; Jani Aro; Juha Näpänkangas; Olli Tenhunen; Meeri Sutinen; Tuula Salo; Heikki Ruskoaho

Background Activation of the renin-angiotensin-system (RAS) plays a key pathophysiological role in heart failure in patients with hypertension and myocardial infarction. However, the function of (pro)renin receptor ((P)RR) is not yet solved. We determined here the direct functional and structural effects of (P)RR in the heart. Methodology/Principal Findings (P)RR was overexpressed by using adenovirus-mediated gene delivery in normal adult rat hearts up to 2 weeks. (P)RR gene delivery into the anterior wall of the left ventricle decreased ejection fraction (P<0.01), fractional shortening (P<0.01), and intraventricular septum diastolic and systolic thickness, associated with approximately 2–fold increase in left ventricular (P)RR protein levels at 2 weeks. To test whether the worsening of cardiac function and structure by (P)RR gene overexpression was mediated by angiotensin II (Ang II), we infused an AT1 receptor blocker losartan via osmotic minipumps. Remarkably, cardiac function deteriorated in losartan-treated (P)RR overexpressing animals as well. Intramyocardial (P)RR gene delivery also resulted in Ang II-independent activation of extracellular-signal-regulated kinase1/2 phosphorylation and myocardial fibrosis, and the expression of transforming growth factor-β1 and connective tissue growth factor genes. In contrast, activation of heat shock protein 27 phosphorylation and apoptotic cell death by (P)RR gene delivery was Ang II-dependent. Finally, (P)RR overexpression significantly increased direct protein–protein interaction between (P)RR and promyelocytic zinc-finger protein. Conclusions/Significance These results indicate for the first time that (P)RR triggers distinct Ang II-independent myocardial fibrosis and deterioration of cardiac function in normal adult heart and identify (P)RR as a novel therapeutic target to optimize RAS blockade in failing hearts.


Molecular and Cellular Endocrinology | 2011

Distinct regulation of B-type natriuretic peptide transcription by p38 MAPK isoforms.

Elina Koivisto; Leena Kaikkonen; Heikki Tokola; Sampsa Pikkarainen; Jani Aro; Harri Pennanen; Teemu Karvonen; Jaana Rysä; Risto Kerkelä; Heikki Ruskoaho

Persistent controversy underlies the functional roles of specific p38 MAPK isoforms in cardiac biology and regulation of hypertrophy-associated genes. Here we show that adenoviral gene transfer of p38β but not p38α increased B-type natriuretic peptide (BNP) mRNA levels in vitro as well as atrial natriuretic peptide mRNA levels both in vitro and in vivo. Overexpression of p38α, in turn, augmented the expression fibrosis-related genes connective tissue growth factor, basic fibroblast growth factor and matrix metalloproteinase-9 both in vitro and in vivo. p38β-induced BNP transcription was diminished by mutation of GATA-4 binding site, whereas overexpression of MKK6b, an upstream regulator of p38α and p38β, activated BNP transcription through both GATA-4 and AP-1. Overexpression of MKK3, upstream regulator of p38α, induced BNP transcription independently from AP-1 and GATA-4. These data provide new evidence for diversity in downstream targets and functional roles of p38 pathway kinases in regulation of hypertrophy-associated cardiac genes.


Atherosclerosis | 2012

Increased thrombospondin-2 in human fibrosclerotic and stenotic aortic valves.

Virva Pohjolainen; Erja Mustonen; Panu Taskinen; Juha Näpänkangas; Hanna Leskinen; Pauli Ohukainen; Tuomas Peltonen; Jani Aro; Tatu Juvonen; Jari Satta; Heikki Ruskoaho; Jaana Rysä

BACKGROUND Active involvement of extracellular matrix (ECM) and its composition regulating factors may have a central role in the pathogenesis of calcific aortic valve disease (CAVD). Thrombospondins (TSPs) are highly conserved matricellular proteins regulating inflammation, angiogenesis and ECM remodeling. These processes are strongly associated with progression of aortic valve stenosis (AS). However, the expression of TSPs in CAVD is not known. METHODS We characterized the expression of TSPs 1-4 in human aortic valves by real-time quantitative reverse transcriptase polymerase chain reaction and immunohistochemistry. Control valves (n=8), thickened and stiffened fibro(sclero)tic valves (n=8), and calcified AS valves (n=24) were compared. Furthermore, potential factors regulating TSP-2 expression was studied by western blotting and gel mobility shift assay in another set of control (n=10) and AS (n=20) valves. RESULTS TSP-2 mRNA levels were increased 4.9-fold (P=0.037) and 4.8-fold (P=0.001) in fibro(sclero)tic and stenotic valves, respectively, whereas the expression of other TSPs did not change significantly. All TSPs 1-4 were detected from aortic valves by immunohistochemistry. Positive TSP-2 immunostaining was seen in the valvular myofibroblasts and patchily in endothelial cells. Semiquantitative analysis of TSP-2 staining indicated increased immunoreactivity for TSP-2 in neo vessels of fibro(sclero)tic and calcified aortic valves. Finally, when compared to controls, AS was associated with significant down regulation of Akt-pathway and diminished binding activity of nuclear factor-κB (NF-κB). CONCLUSIONS We report for the first time that TSPs 1-4 are expressed in human aortic valves. CAVD is characterized by myofibroblastic proliferation and neovascularization associated upregulation of TSP-2 expression, as well as inactivation of Akt and NF-κB.


Journal of Molecular and Cellular Cardiology | 2011

Parthenolide inhibits STAT3 signaling and attenuates angiotensin II-induced left ventricular hypertrophy via modulation of fibroblast activity

Réka Skoumal; Miklós Tóth; Raisa Serpi; Jaana Rysä; Hanna Leskinen; Johanna Ulvila; Tarja Saiho; Jani Aro; Heikki Ruskoaho; István Szokodi; Risto Kerkelä

Parthenolide has shown promise in treatment of various cancers via inhibition of the transcription factor signal transducer and activator of transcription 3 (STAT3). Activation of STAT3 has been observed in left ventricular hypertrophy (LVH); however, its exact role is not known. The aim of the study was to examine the effects of parthenolide on pressure overload-induced LVH in rats. Pressure overload was induced by angiotensin II (Ang II) infusion (33 μg/kg/h) for 1 week in the presence or absence of parthenolide (0.5mg/kg/day, i.p.). Ang II infusion resulted in LVH associated with increased phosphorylation of STAT3 at Tyr705 and Ser727. Parthenolide treatment had no effect on ejection fraction, but abolished the activation of STAT3 and reduced the Ang II-induced LVH (LV posterior wall thickness in end-diastole: 2.28 ± 0.12 mm vs. 1.80 ± 0.06 mm, P<0.001). Importantly, parthenolide treatment had no effect on heart rate or blood pressure. Parthenolide treatment almost completely abolished the Ang II-induced increase in the number of cells positive for prolyl-4-hydroxylase, a marker for collagen-synthesizing cells, as well as Ang II-induced interstitial fibrosis in the left ventricles. This was associated with significant attenuation of Ang II-induced increase in mRNA levels of type 1 collagen and fibronectin. Moreover, parthenolide attenuated the Ang II-induced expression of interleukin-6, a potent pro-hypertrophic fibroblast-derived factor. We conclude that pharmacological inhibition of STAT3 signaling by parthenolide has favorable effects on pressure overload-induced LVH through attenuation of fibroblast activation. Therefore parthenolide may prove as a useful therapy for certain cardiovascular disease.


Blood Pressure | 2009

Upregulation of cardiac matrix Gla protein expression in response to hypertrophic stimuli

Erja Mustonen; Virva Pohjolainen; Jani Aro; Sampsa Pikkarainen; Hanna Leskinen; Heikki Ruskoaho; Jaana Rysä

Abstract Matrix Gla protein (MGP) expression is increased in cardiac hypertrophy, but the precise mechanisms regulating its expression are unknown. Here we characterized the effect of pressure overload and myocardial infarction in vivo as well as mechanical stretch and hypertrophic agonists in vitro on MGP expression. When angiotensin II (Ang II) was administered by osmotic minipumps, left ventricular (LV) MGP mRNA levels increased significantly from 6 h to 2weeks, whereas intravenous arginine8-vasopressin increased LV MGP mRNA levels within 4 h. During post-infarction remodeling process, MGP mRNA levels were elevated at 24 h (1.3-fold, p<0.05) and the maximal increase was observed at 4 weeks (2.8-fold, p<0.01). Ang II increased MGP mRNA levels 20% (p<0.05) in neonatal rat cardiac myocytes and 40% (p<0.05) in cardiac fibroblasts, whereas endothelin-1 decreased MGP mRNA levels 30% (p<0.01) in myocytes and had no effect in fibroblasts. Cyclic mechanical stretch resulted in reduction of MGP gene expression in both cardiac myocytes and fibroblasts. These results demonstrate that MGP is rapidly upregulated in response to cardiac overload well before the development of LV hypertrophy and post-infarction remodeling process. Our results also suggest that Ang II may be involved in mediating load-induced activation of MGP expression.


Blood Pressure | 2006

Early left ventricular gene expression profile in response to increase in blood pressure

Jaana Rysä; Jani Aro; Heikki Ruskoaho

The heart adapts to increased pressure overload by hypertrophic growth of terminally differentiated cardiomyocytes. At the genetic level, the hypertrophic response is characterized by the reprogramming of gene expression, i.e. upregulation of immediate early genes, natriuretic peptide genes and genes encoding structural proteins. In the present study, we characterized the early changes in gene expression with cDNA expression arrays in response to increase in blood pressure produced by arginine8–vasopressin infusion (0.05 µg/kg/min, i.v.) for 30 min and 4 h in conscious normotensive rats. Expression profiling revealed differential expression of 14 genes in the left ventricle, and several novel factors of immediate early genetic response to pressure overload were identified, such as growth arrest and DNA damage inducible protein 45 (GADD45α), epidermal fatty acid‐binding protein (E‐FABP) and Bcl‐X. Administration of angiotensin II (Ang II) for 6 h by osmotic minipumps also increased left ventricular GADD45α, E‐FABP and Bcl‐X gene expression. Furthermore, the induction of GADD45α and Bcl‐X gene expression by Ang II was blocked by angiotensin II type 1 receptor antagonist losartan. In summary, our analysis provided new insights into the pathogenesis of pressure overload‐induced hypertrophy by suggesting the existence of novel regulators of the immediate early gene expression program.


Basic & Clinical Pharmacology & Toxicology | 2010

Metoprolol Treatment Lowers Thrombospondin-4 Expression in Rats with Myocardial Infarction and Left Ventricular Hypertrophy

Erja Mustonen; Hanna Leskinen; Jani Aro; Marja Luodonpää; Olli Vuolteenaho; Heikki Ruskoaho; Jaana Rysä

Thrombospondins are matrix proteins linked to extracellular matrix remodelling but their precise role in the heart is not known. In this study, we characterised left ventricular thrombospondin-1 and -4 expression in rats treated with a beta-blocker metoprolol during the remodelling process in response to pressure overload and acute myocardial infarction. Left ventricular thrombospondin-1 and thrombospondin-4 mRNA levels increased 8.4-fold (p < 0.001) and 7.3-fold (p < 0.001) post-infarction, respectively. Metoprolol infusion by osmotic minipumps (1.5 mg/kg/hr) for 2 weeks after myocardial infarction decreased thrombospondin-1 and thrombospondin-4 mRNA levels (55% and 50%, respectively), improved left ventricular function, and attenuated left ventricular remodelling with reduction of left ventricular atrial natriuretic peptide and brain natriuretic peptide gene expression. Thrombospondin-1 and -4 mRNA levels correlated positively with echocardiographic parameters of left ventricular remodelling as well as with atrial natriuretic peptide and brain natriuretic peptide gene expression. Moreover, there was a negative correlation between left ventricular ejection fraction and thrombospondin-1 mRNA levels. In 12-month-old spontaneously hypertensive rats with left ventricular hypertrophy, metoprolol decreased left ventricular thrombospondin-4 levels and attenuated remodelling while thrombospondin-1, atrial natriuretic peptide and brain natriuretic peptide mRNA levels as well as left ventricular function remained unchanged. In metoprolol-treated spontaneously hypertensive rats, thrombospondin-4 gene expression correlated with parameters of left ventricular remodelling, while no correlations between thrombospondins and natriuretic peptides were observed. These results indicate that thrombospondin-1 expression is linked exclusively to left ventricular remodelling process post-infarction while thrombospondin-4 associates with myocardial remodelling both after myocardial infarction and in hypertensive heart disease suggesting that thrombospondins may have unique roles in extracellular matrix remodelling process.

Collaboration


Dive into the Jani Aro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaana Rysä

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge