Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juha Näpänkangas is active.

Publication


Featured researches published by Juha Näpänkangas.


PLOS ONE | 2012

(Pro)renin receptor triggers distinct angiotensin II-independent extracellular matrix remodeling and deterioration of cardiac function.

Anne-Mari Moilanen; Jaana Rysä; Raisa Serpi; Erja Mustonen; Zoltan Szabo; Jani Aro; Juha Näpänkangas; Olli Tenhunen; Meeri Sutinen; Tuula Salo; Heikki Ruskoaho

Background Activation of the renin-angiotensin-system (RAS) plays a key pathophysiological role in heart failure in patients with hypertension and myocardial infarction. However, the function of (pro)renin receptor ((P)RR) is not yet solved. We determined here the direct functional and structural effects of (P)RR in the heart. Methodology/Principal Findings (P)RR was overexpressed by using adenovirus-mediated gene delivery in normal adult rat hearts up to 2 weeks. (P)RR gene delivery into the anterior wall of the left ventricle decreased ejection fraction (P<0.01), fractional shortening (P<0.01), and intraventricular septum diastolic and systolic thickness, associated with approximately 2–fold increase in left ventricular (P)RR protein levels at 2 weeks. To test whether the worsening of cardiac function and structure by (P)RR gene overexpression was mediated by angiotensin II (Ang II), we infused an AT1 receptor blocker losartan via osmotic minipumps. Remarkably, cardiac function deteriorated in losartan-treated (P)RR overexpressing animals as well. Intramyocardial (P)RR gene delivery also resulted in Ang II-independent activation of extracellular-signal-regulated kinase1/2 phosphorylation and myocardial fibrosis, and the expression of transforming growth factor-β1 and connective tissue growth factor genes. In contrast, activation of heat shock protein 27 phosphorylation and apoptotic cell death by (P)RR gene delivery was Ang II-dependent. Finally, (P)RR overexpression significantly increased direct protein–protein interaction between (P)RR and promyelocytic zinc-finger protein. Conclusions/Significance These results indicate for the first time that (P)RR triggers distinct Ang II-independent myocardial fibrosis and deterioration of cardiac function in normal adult heart and identify (P)RR as a novel therapeutic target to optimize RAS blockade in failing hearts.


European Heart Journal | 2008

Increase in tissue endothelin-1 and ETA receptor levels in human aortic valve stenosis

Tuomas Peltonen; Panu Taskinen; Juha Näpänkangas; Hanna Leskinen; Pasi Ohtonen; Ylermi Soini; Tatu Juvonen; Jari Satta; Olli Vuolteenaho; Heikki Ruskoaho

AIMS Aortic valve stenosis (AS) is an actively regulated process like atherosclerosis, which is accompanied by changes e.g. in endothelin-related genes. However, the role of endothelin peptides in AS is unknown. METHODS AND RESULTS We characterized the expression of the endothelin system in aortic valves of patients with normal valves (n = 12), regurgitation, and fibrosis (n = 6) and AS (n = 18) by reverse-transcriptase-polymerase chain reaction and immunohistochemistry. The number of endothelin-1 (ET-1) positive cells was higher in AS than in control valves, while levels of ET-1 mRNA did not differ between groups. Endothelin receptor-A (ET(A)) mRNA levels were upregulated in stenotic valves (4.3-fold, P = 0.032) associated with a remarkable increase in number of ET(A)-immunopositive cells. ET(B)-receptor mRNA levels did not change during disease progression. Endothelin-converting enzyme-1 (ECE-1) mRNA levels were 42% lower (P = 0.007) in stenotic valves. Finally, because ET-1 and ECE-1 have binding site for activator protein-1 (AP-1), we measured AP-1 DNA binding by gel shift assays, which showed significantly lower (76%, P = 0.003) activity in AS. CONCLUSION AS is characterized by distinct upregulation of ET-1 and its target receptor ET(A), promoting growth, inflammation, and fibrosis. These findings suggest therapeutic potential for ET(A)-receptor antagonists in aortic valve calcification.


Atherosclerosis | 2012

Increased thrombospondin-2 in human fibrosclerotic and stenotic aortic valves.

Virva Pohjolainen; Erja Mustonen; Panu Taskinen; Juha Näpänkangas; Hanna Leskinen; Pauli Ohukainen; Tuomas Peltonen; Jani Aro; Tatu Juvonen; Jari Satta; Heikki Ruskoaho; Jaana Rysä

BACKGROUND Active involvement of extracellular matrix (ECM) and its composition regulating factors may have a central role in the pathogenesis of calcific aortic valve disease (CAVD). Thrombospondins (TSPs) are highly conserved matricellular proteins regulating inflammation, angiogenesis and ECM remodeling. These processes are strongly associated with progression of aortic valve stenosis (AS). However, the expression of TSPs in CAVD is not known. METHODS We characterized the expression of TSPs 1-4 in human aortic valves by real-time quantitative reverse transcriptase polymerase chain reaction and immunohistochemistry. Control valves (n=8), thickened and stiffened fibro(sclero)tic valves (n=8), and calcified AS valves (n=24) were compared. Furthermore, potential factors regulating TSP-2 expression was studied by western blotting and gel mobility shift assay in another set of control (n=10) and AS (n=20) valves. RESULTS TSP-2 mRNA levels were increased 4.9-fold (P=0.037) and 4.8-fold (P=0.001) in fibro(sclero)tic and stenotic valves, respectively, whereas the expression of other TSPs did not change significantly. All TSPs 1-4 were detected from aortic valves by immunohistochemistry. Positive TSP-2 immunostaining was seen in the valvular myofibroblasts and patchily in endothelial cells. Semiquantitative analysis of TSP-2 staining indicated increased immunoreactivity for TSP-2 in neo vessels of fibro(sclero)tic and calcified aortic valves. Finally, when compared to controls, AS was associated with significant down regulation of Akt-pathway and diminished binding activity of nuclear factor-κB (NF-κB). CONCLUSIONS We report for the first time that TSPs 1-4 are expressed in human aortic valves. CAVD is characterized by myofibroblastic proliferation and neovascularization associated upregulation of TSP-2 expression, as well as inactivation of Akt and NF-κB.


Annals of Medicine | 2015

MicroRNA-125b and chemokine CCL4 expression are associated with calcific aortic valve disease.

Pauli Ohukainen; Suvi Syväranta; Juha Näpänkangas; Kristiina Rajamäki; Panu Taskinen; Tuomas Peltonen; Satu Helske-Suihko; Petri T. Kovanen; Heikki Ruskoaho; Jaana Rysä

Abstract Calcific aortic valve disease (CAVD) is a progressive pathological condition with no effective pharmacological therapy. To identify novel molecular pathways as potential targets for pharmacotherapy, we studied microRNA (miRNA) profiles of heavily stenotic aortic valves (AS). One of the most upregulated miRNAs in AS valves compared to control valves was miR-125b (1.4-fold; P < 0.05). To identify CAVD-related changes in gene expression, DNA microarray analysis was performed, including an intermediate fibro(sclero)tic stage of the disease. This revealed changes especially in genes related to inflammation and immune response, including chemokine (C-C motif) ligand 3 (CCL3) and 4 (CCL4). CCL3 mRNA level was increased 3.9-fold (P < 0.05) when AS valves were compared to control valves, and a 2.5-fold increase (P < 0.05) in CCL4 gene expression was observed when fibro(sclero)tic valves were compared to control valves. Both CCL3 and CCL4 localized to macrophages by immunofluorescence. To identify chemokine–miRNA target pairs, data from miRNA target prediction databases were combined with valvular miRNA and mRNA expression profiles. MiR-125b was computationally predicted to target CCL4, as confirmed experimentally in cultured human THP-1 macrophages. Collectively, miR-125b and CCL4 appear to be involved in the progression of CAVD and may offer novel therapeutic and diagnostic strategies related to this disease.


Nephrology Dialysis Transplantation | 2012

Left ventricular periostin gene expression is associated with fibrogenesis in experimental renal insufficiency

Virva Pohjolainen; Jaana Rysä; Juha Näpänkangas; Peeter Kööbi; Arttu Eräranta; Mika Ilves; Raisa Serpi; Ilkka Pörsti; Heikki Ruskoaho

BACKGROUND Cardiovascular diseases are the most important cause of death in patients with impaired kidney function. Left ventricular hypertrophy (LVH), cardiac interstitial fibrosis and cardiovascular calcifications are characteristic of chronic renal insufficiency (CRI). Periostin is a fibrogenesis- and calcification-related matricellular protein re-expressed in adult tissues undergoing remodelling in response to pathological stimuli. The role of periostin in CRI-induced LVH is unknown. METHODS Rats were 5/6-nephrectomized (NX), and after 15 weeks of disease progression high-calcium, high-phosphate or paricalcitol treatment was given for 12 weeks. Cardiac tissue and blood samples were taken to study periostin gene expression and to determine factors contributing to its reactivation, respectively. Left ventricular (LV) periostin expression was also examined in response to angiotensin II or arginine(8)-vasopressin (AVP)-induced pressure overload and in spontaneously hypertensive rats. RESULTS CRI resulted in a 6.5-fold increase in LV periostin messenger RNA (mRNA) levels. Positive extracellular immunostaining for periostin was detected in areas of infiltrated inflammatory cells and fibrotic lesions. There was a significant correlation between LV periostin mRNA levels and plasma biomarkers of impaired kidney function, LVH, fibrogenesis-related proteins osteopontin and osteoactivin, and anti-calcific matrix Gla protein. Moreover, LV periostin gene expression in CRI correlated positively with systolic blood pressure (BP) and was activated rapidly in response to angiotensin II or AVP infusions. CONCLUSIONS Periostin is involved in fibrotic cardiac remodelling in CRI. The re-expression of periostin is localized to the fibrotic and inflammatory lesions and is most likely the consequence of elevated BP.


Genes, Chromosomes and Cancer | 2012

The hypermethylation of the O6-methylguanine-DNA methyltransferase gene promoter in gliomas—correlation with array comparative genome hybridization results and IDH1 mutation

Katja Tuononen; Olli Tynninen; Virinder Kaur Sarhadi; Anne Tyybäkinoja; Mikael Lindlöf; Miia Antikainen; Juha Näpänkangas; Ari Hirvonen; Hanna Mäenpää; Anders Paetau; Sakari Knuutila

The use of molecular markers in the diagnostics of gliomas aids histopathological diagnosis and allows their further classification into clinically significant subgroups. The aim of this study was to characterize the methylation pattern of the O6‐methylguanine‐DNA methyltransferase (MGMT) promoter, gene copy number aberrations, and isocitrate dehydrogenase I (IDH1) mutation in gliomas. We studied 51 gliomas (15 oligodendrogliomas, 18 oligoastrocytomas, 3 astrocytomas, and 15 glioblastomas) by pyrosequencing, array comparative genome hybridization (CGH), and immunohistochemistry. MGMT hypermethylation was observed in 100% of oligoastrocytomas, 93% of oligodendrogliomas, and 47% of glioblastomas. The most frequently altered chromosomal regions were deletions of 1p31.1/21.1‐22.2 and 19q13.3qter in oligodendroglial tumors, and losses of 9p21.3, 10q25.3qter, and 10q26.13‐26.2 in glioblastomas. Deletions on 9p and 10q, and gain of 7p were associated with the unmethylated MGMT phenotype, whereas deletion of 19q and oligodendroglial morphology was associated with MGMT hypermethylation. IDH1 mutation showed positive correlation with MGMT hypermethylation and loss of 1p/19q. Our results suggest that MGMT promoter methylation, analyzed by pyrosequencing, is a frequent event in oligodendroglial tumors, and it correlates with IDH1 mutation and 19q loss in gliomas. Pyrosequencing proved a good method for assessing the degree of MGMT methylation in formalin‐fixed paraffin‐embedded glioma samples. However, further studies are needed to confirm a clinically relevant cut‐off point for MGMT methylation in gliomas.


PLOS ONE | 2015

The Early-Onset Myocardial Infarction Associated PHACTR1 Gene Regulates Skeletal and Cardiac Alpha-Actin Gene Expression.

Annina Kelloniemi; Zoltan Szabo; Raisa Serpi; Juha Näpänkangas; Pauli Ohukainen; Olli Tenhunen; Leena Kaikkonen; Elina Koivisto; Zsolt Bagyura; Risto Kerkelä; Margrét Leósdóttir; Thomas Hedner; Olle Melander; Heikki Ruskoaho; Jaana Rysä

The phosphatase and actin regulator 1 (PHACTR1) locus is a very commonly identified hit in genome-wide association studies investigating coronary artery disease and myocardial infarction (MI). However, the function of PHACTR1 in the heart is still unknown. We characterized the mechanisms regulating Phactr1 expression in the heart, used adenoviral gene delivery to investigate the effects of Phactr1 on cardiac function, and analyzed the relationship between MI associated PHACTR1 allele and cardiac function in human subjects. Phactr1 mRNA and protein levels were markedly reduced (60%, P<0.01 and 90%, P<0.001, respectively) at 1 day after MI in rats. When the direct myocardial effects of Phactr1 were studied, the skeletal α-actin to cardiac α-actin isoform ratio was significantly higher (1.5-fold, P<0.05) at 3 days but 40% lower (P<0.05) at 2 weeks after adenovirus-mediated Phactr1 gene delivery into the anterior wall of the left ventricle. Similarly, the skeletal α-actin to cardiac α-actin ratio was lower at 2 weeks in infarcted hearts overexpressing Phactr1. In cultured neonatal cardiac myocytes, adenovirus-mediated Phactr1 overexpression for 48 hours markedly increased the skeletal α-actin to cardiac α-actin ratio, this being associated with an enhanced DNA binding activity of serum response factor. Phactr1 overexpression exerted no major effects on the expression of other cardiac genes or LV structure and function in normal and infarcted hearts during 2 weeks’ follow-up period. In human subjects, MI associated PHACTR1 allele was not associated significantly with cardiac function (n = 1550). Phactr1 seems to regulate the skeletal to cardiac α-actin isoform ratio.


Atherosclerosis | 2011

(Pro)renin receptors and angiotensin converting enzyme 2/angiotensin-(1-7)/Mas receptor axis in human aortic valve stenosis

Tuomas Peltonen; Juha Näpänkangas; Pasi Ohtonen; Jani Aro; Jenni Peltonen; Ylermi Soini; Tatu Juvonen; Jari Satta; Heikki Ruskoaho; Panu Taskinen

BACKGROUND There is increasing evidence that renin-angiotensin system (RAS) may play a major role in the actively regulated fibrocalcific process in aortic valve stenosis (AS), but the gene expression or function of (pro)renin receptor ((P)RR), prorenin and renin or angiotensin converting enzyme 2(ACE2)/angiotensin-(1-7)/Mas receptor axis in calcific aortic valve disease is not known. METHODS AND RESULTS We characterized expression of (P)RR, ACE2 and Mas receptor as well as renin, prorenin and angiotensin II type 2 (AT(2)) receptors in human aortic valves, and compared normal control valves (n = 11) with valves obtained from patients with aortic regurgitation (AR, n = 14), AR with fibrosis (n = 20) and AS (n = 61). By immunohistochemistry (P)RR positive staining was seen in the valvular endothelial cells of control and in the neovessels of stenotic valves. By RT-PCR, renin mRNA levels were 72% (P = 0.001) and prorenin mRNA levels 64% lower (P = 0.002) in stenotic aortic valves compared to control valves. ACE2, Mas receptor and AT(2)-receptor mRNA levels were 69% (P < 0.001), 58% (P = 0.008) and 75% (P = 0.001) lower, respectively, in stenotic valves. ACE2 positive staining, existing to lesser extent in stenotic aortic valves, was localized mainly to stromal area in spongiosa layer in control valves. CONCLUSIONS (P)RR, prorenin and renin are expressed in human aortic valves. We also report for the first time expression of ACE2/angiotensin-(1-7)/-Mas receptor axis in human aortic valve cusps. The downregulation of ACE2/angiotensin-(1-7)/-Mas receptor axis as well as AT(2)-receptors may promote fibrosis, proliferation and inflammation in patients with AS.


PLOS ONE | 2015

WDR12, a Member of Nucleolar PeBoW-Complex, Is Up-Regulated in Failing Hearts and Causes Deterioration of Cardiac Function.

Anne-Mari Moilanen; Jaana Rysä; Leena Kaikkonen; Teemu Karvonen; Erja Mustonen; Raisa Serpi; Zoltán Szabó; Olli Tenhunen; Zsolt Bagyura; Juha Näpänkangas; Pauli Ohukainen; Pasi Tavi; Risto Kerkelä; Margrét Leósdóttir; Björn Wahlstrand; Thomas Hedner; Olle Melander; Heikki Ruskoaho

Aims In a recent genome-wide association study, WD-repeat domain 12 (WDR12) was associated with early-onset myocardial infarction (MI). However, the function of WDR12 in the heart is unknown. Methods and Results We characterized cardiac expression of WDR12, used adenovirus-mediated WDR12 gene delivery to examine effects of WDR12 on left ventricular (LV) remodeling, and analyzed relationship between MI associated WDR12 allele and cardiac function in human subjects. LV WDR12 protein levels were increased in patients with dilated cardiomyopathy and rats post-infarction. In normal adult rat hearts, WDR12 gene delivery into the anterior wall of the LV decreased interventricular septum diastolic and systolic thickness and increased the diastolic and systolic diameters of the LV. Moreover, LV ejection fraction (9.1%, P<0.05) and fractional shortening (12.2%, P<0.05) were declined. The adverse effects of WDR12 gene delivery on cardiac function were associated with decreased cellular proliferation, activation of p38 mitogen–activated protein kinase (MAPK)/heat shock protein (HSP) 27 pathway, and increased protein levels of Block of proliferation 1 (BOP1), essential for ribosome biogenesis. Post-infarction WDR12 gene delivery decreased E/A ratio (32%, P<0.05) suggesting worsening of diastolic function. In human subjects, MI associated WDR12 allele was associated significantly with diastolic dysfunction and left atrial size. Conclusions WDR12 triggers distinct deterioration of cardiac function in adult rat heart and the MI associated WDR12 variant is associated with diastolic dysfunction in human subjects.


Biochemical Pharmacology | 2018

Activation of nuclear receptor PXR impairs glucose tolerance and dysregulates GLUT2 expression and subcellular localization in liver

Fatemeh Hassani-Nezhad-Gashti; Jaana Rysä; Outi Kummu; Juha Näpänkangas; Marcin Buler; Mikko Karpale; Janne Hukkanen; Jukka Hakkola

Graphical abstract Figure. No caption available. ABSTRACT Pregnane X receptor (PXR) is a nuclear receptor that senses chemical environment and is activated by numerous clinically used drugs and environmental contaminants. Previous studies have indicated that several drugs known to activate PXR appear to induce glucose intolerance. We now aimed to reveal the role of PXR in drug‐induced glucose intolerance and characterize the mechanisms involved. We used PXR knockout mice model to investigate the significance of this nuclear receptor in the regulation of glucose tolerance. PXR ligand pregnenolone‐16&agr;‐carbonitrile (PCN) impaired glucose tolerance in the wildtype mice but not in the PXR knockout mice. Furthermore, DNA microarray and bioinformatics analysis of differentially expressed genes and glucose metabolism relevant pathways in PCN treated primary hepatocytes indicated that PXR regulates genes involved in glucose uptake. PCN decreased the expression of glucose transporter 2 (GLUT2) in mouse liver and in the wildtype mouse hepatocytes but not in the PXR knockout cells. Data mining of published chromatin immunoprecipitation‐sequencing results indicate that Glut2 gene is a direct PXR target. Furthermore, PCN induced internalization of GLUT2 protein from the plasma membrane to the cytosol in the liver in vivo and repressed glucose uptake in the primary hepatocytes. Our results indicate that the activation of PXR impairs glucose tolerance and thus PXR represents a novel diabetogenic pathway. PXR activation dysregulates GLUT2 function by two different mechanisms. These findings may partly explain the diabetogenic effects of medications and environmental contaminants.

Collaboration


Dive into the Juha Näpänkangas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaana Rysä

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Panu Taskinen

Oulu University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pasi Ohtonen

Oulu University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jari Satta

Oulu University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge