Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janice A. Vranka is active.

Publication


Featured researches published by Janice A. Vranka.


Experimental Eye Research | 2015

Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma.

Janice A. Vranka; Mary J. Kelley; Ted S. Acott; Kate E. Keller

The trabecular meshwork (TM) is located in the anterior segment of the eye and is responsible for regulating the outflow of aqueous humor. Increased resistance to aqueous outflow causes intraocular pressure to increase, which is the primary risk factor for glaucoma. TM cells reside on a series of fenestrated beams and sheets through which the aqueous humor flows to exit the anterior chamber via Schlemms canal. The outer trabecular cells are phagocytic and are thought to function as a pre-filter. However, most of the outflow resistance is thought to be from the extracellular matrix (ECM) of the juxtacanalicular region, the deepest portion of the TM, and from the inner wall basement membrane of Schlemms canal. It is becoming increasingly evident that the extracellular milieu is important in maintaining the integrity of the TM. In glaucoma, not only have ultrastructural changes been observed in the ECM of the TM, and a significant number of mutations in ECM genes been noted, but the stiffness of glaucomatous TM appears to be greater than that of normal tissue. Additionally, TGFβ2 has been found to be elevated in the aqueous humor of glaucoma patients and is assumed to be involved in ECM changes deep with the juxtacanalicular region of the TM. This review summarizes the current literature on trabecular ECM as well as the development and function of the TM. Animal models and organ culture models targeting specific ECM molecules to investigate the mechanisms of glaucoma are described. Finally, the growing number of mutations that have been identified in ECM genes and genes that modulate ECM in humans with glaucoma are documented.


Investigative Ophthalmology & Visual Science | 2011

Segmental Versican Expression in the Trabecular Meshwork and Involvement in Outflow Facility

Kate E. Keller; John M. Bradley; Janice A. Vranka; Ted S. Acott

PURPOSE Versican is a large proteoglycan with numerous chondroitin sulfate (CS) glycosaminoglycan (GAG) side chains attached. To assess versicans potential contributions to aqueous humor outflow resistance, its segmental distribution in the trabecular meshwork (TM) and the effect on outflow facility of silencing the versican gene were evaluated. METHODS Fluorescent quantum dots (Qdots) were perfused to label outflow pathways of anterior segments. Immunofluorescence with confocal microscopy and quantitative RT-PCR were used to determine versican protein and mRNA distribution relative to Qdot-labeled regions. Lentiviral delivery of shRNA-silencing cassettes to TM cells in perfused anterior segment cultures was used to evaluate the involvement of versican and CS GAG chains in outflow facility. RESULTS Qdot uptake by TM cells showed considerable segmental variability in both human and porcine outflow pathways. Regional levels of Qdot labeling were inversely related to versican protein and mRNA levels; versican levels were relatively high in sparsely Qdot-labeled regions and low in densely labeled regions. Versican silencing decreased outflow facility in human and increased facility in porcine anterior segments. However, RNAi silencing of ChGn, an enzyme unique to CS GAG biosynthesis, increased outflow facility in both species. The fibrillar pattern of versican immunostaining in the TM juxtacanalicular region was disrupted after versican silencing in perfusion culture. CONCLUSIONS Versican appears to be a central component of the outflow resistance, where it may organize GAGs and other ECM components to facilitate and control open flow channels in the TM. However, the exact molecular organization of this resistance appears to differ between human and porcine eyes.


PLOS ONE | 2015

Mapping molecular differences and extracellular matrix gene expression in segmental outflow pathways of the human ocular trabecular meshwork.

Janice A. Vranka; John M. Bradley; Yong Feng Yang; Kate E. Keller; Ted S. Acott

Elevated intraocular pressure (IOP) is the primary risk factor for glaucoma, and lowering IOP remains the only effective treatment for glaucoma. The trabecular meshwork (TM) in the anterior chamber of the eye regulates IOP by generating resistance to aqueous humor outflow. Aqueous humor outflow is segmental, but molecular differences between high and low outflow regions of the TM are poorly understood. In this study, flow regions of the TM were characterized using fluorescent tracers and PCR arrays. Anterior segments from human donor eyes were perfused at physiological pressure in an ex vivo organ culture system. Fluorescently-labeled microspheres of various sizes were perfused into anterior segments to label flow regions. Actively perfused microspheres were segmentally distributed, whereas microspheres soaked passively into anterior segments uniformly labeled the TM and surrounding tissues with no apparent segmentation. Cell-tracker quantum dots (20 nm) were localized to the outer uveal and corneoscleral TM, whereas larger, modified microspheres (200 nm) localized throughout the TM layers and Schlemm’s canal. Distribution of fluorescent tracers demonstrated a variable labeling pattern on both a macro- and micro-scale. Quantitative PCR arrays allowed identification of a variety of extracellular matrix genes differentially expressed in high and low flow regions of the TM. Several collagen genes (COL16A1, COL4A2, COL6A1 and 2) and MMPs (1, 2, 3) were enriched in high, whereas COL15A1, and MMP16 were enriched in low flow regions. Matrix metalloproteinase activity was similar in high and low regions using a quantitative FRET peptide assay, whereas protein levels in tissues showed modest regional differences. These gene and protein differences across regions of the TM provide further evidence for a molecular basis of segmental flow routes within the aqueous outflow pathway. New insight into the molecular mechanisms of segmental aqueous outflow may aid in the design and delivery of improved treatments for glaucoma patients.


Reference Module in Chemistry, Molecular Sciences and Chemical Engineering#R##N#Comprehensive Natural Products II#R##N#Chemistry and Biology | 2010

Collagen formation and structure

Hans Peter Bächinger; Kazunori Mizuno; Janice A. Vranka; Sergei P. Boudko

This chapter reviews the current knowledge of collagens, a protein family important for the extracellular matrix of vertebrate animals. The 28 types of collagens are discussed in terms of their structure, their distribution in tissues, and their involvement in human diseases. The biosynthesis of collagens with their numerous posttranslational modifications is reviewed. The current views on chain selection, trimerization, and folding of collagens and collagen-like peptides are described and recent advances in the determination of the atomic structure of the triple helix are also discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Biological role of prolyl 3-hydroxylation in type IV collagen

Elena Pokidysheva; Sergei Boudko; Janice A. Vranka; Keith Zientek; Kerry Maddox; Markus Moser; Reinhard Fässler; Jerry Ware; Hans Peter Bächinger

Significance Prolyl 3-hydroxylation is a crucial posttranslational modification of collagens. To investigate the role of prolyl 3-hydroxylase 2 (P3H2) and function of 3-hydroxylation in type IV collagen, we created a KO mouse. Prolyl 3-hydroxylation of type IV collagen is required to avoid an aberrant interaction with the platelet-specific glycoprotein VI (GPVI), resulting in platelet aggregation, thrombosis of the maternal blood, and death of the embryo. Homozygous P3H2-null embryos die before embryonic day 8.5. The lethal phenotype can be rescued by producing double mutants of P3H2 and GPVI. Double nulls are viable and fertile. Thus, 3-hydroxylation of type IV collagen is indispensable for embryonic development in mice. We assign a molecular function for prolyl 3-hydroxyl groups in type IV collagen. Collagens constitute nearly 30% of all proteins in our body. Type IV collagen is a major and crucial component of basement membranes. Collagen chains undergo several posttranslational modifications that are indispensable for proper collagen function. One of these modifications, prolyl 3-hydroxylation, is accomplished by a family of prolyl 3-hydroxylases (P3H1, P3H2, and P3H3). The present study shows that P3H2-null mice are embryonic-lethal by embryonic day 8.5. The mechanism of the unexpectedly early lethality involves the interaction of non–3-hydroxylated embryonic type IV collagen with the maternal platelet-specific glycoprotein VI (GPVI). This interaction results in maternal platelet aggregation, thrombosis of the maternal blood, and death of the embryo. The phenotype is completely rescued by producing double KOs of P3H2 and GPVI. Double nulls are viable and fertile. Under normal conditions, subendothelial collagens bear the GPVI-binding sites that initiate platelet aggregation upon blood exposure during injuries. In type IV collagen, these sites are normally 3-hydroxylated. Thus, prolyl 3-hydroxylation of type IV collagen has an important function preventing maternal platelet aggregation in response to the early developing embryo. A unique link between blood coagulation and the ECM is established. The newly described mechanism may elucidate some unexplained fetal losses in humans, where thrombosis is often observed at the maternal/fetal interface. Moreover, epigenetic silencing of P3H2 in breast cancers implies that the interaction between GPVI and non–3-hydroxylated type IV collagen might also play a role in the progression of malignant tumors and metastasis.


PLOS ONE | 2012

Inhibition of Hyaluronan Synthesis Reduces Versican and Fibronectin Levels in Trabecular Meshwork Cells

Kate E. Keller; Ying Ying Sun; Janice A. Vranka; Lauren Hayashi; Ted S. Acott

Hyaluronan (HA) is a major component of the extracellular matrix (ECM) and is synthesized by three HA synthases (HAS). Similarities between the HAS2 knockout mouse and the hdf mutant mouse, which has a mutation in the versican gene, suggest that HA and versican expression may be linked. In this study, the relationship between HA synthesis and levels of versican, fibronectin and several other ECM components in trabecular meshwork cells from the anterior segment of the eye was investigated. HA synthesis was inhibited using 4-methylumbelliferone (4MU), or reduced by RNAi silencing of each individual HAS gene. Quantitative RT-PCR and immunoblotting demonstrated a reduction in mRNA and protein levels of versican and fibronectin. Hyaluronidase treatment also reduced versican and fibronectin levels. These effects could not be reversed by addition of excess glucose or glucosamine or exogenous HA to the culture medium. CD44, tenascin C and fibrillin-1 mRNA levels were reduced by 4MU treatment, but SPARC and CSPG6 mRNA levels were unaffected. Immunostaining of trabecular meshwork tissue after exposure to 4MU showed an altered localization pattern of HA-binding protein, versican and fibronectin. Reduction of versican by RNAi silencing did not affect HA concentration as assessed by ELISA. Together, these data imply that HA concentration affects synthesis of certain ECM components. Since precise regulation of the trabecular meshwork ECM composition and organization is required to maintain the aqueous humor outflow resistance and intraocular pressure homeostasis in the eye, coordinated coupling of HA levels and several of its ECM binding partners should facilitate this process.


Investigative Ophthalmology & Visual Science | 2013

The effects of tenascin C knockdown on trabecular meshwork outflow resistance

Kate E. Keller; Janice A. Vranka; Ramez I. Haddadin; Min Hyung Kang; Dong Jin Oh; Douglas J. Rhee; Yong Feng Yang; Ying Ying Sun; Mary J. Kelley; Ted S. Acott

PURPOSE Tenascin C (TNC) is a matricellular glycoprotein whose expression in adult tissue is indicative of tissue remodeling. The purpose of the current study was to determine the localization of TNC in trabecular meshwork (TM) tissue and to analyze the effects of TNC on intraocular pressure (IOP). METHODS Human TM frontal sections were immunostained with anti-TNC and imaged by confocal microscopy. TNC mRNA and protein levels were quantitated in anterior segments perfused at physiological and elevated pressure. Short, hairpin RNA (shRNA) silencing lentivirus targeting full-length TNC (shTNC) was applied to anterior segment perfusion organ cultures. The IOPs and central corneal thickness (CCT) of wild-type, TNC(-/-), and tenascin X (TNX(-/-)) knockout mice were measured. RESULTS TNC was distributed in the juxtacanalicular (JCT) region of adult human TM, predominantly in the basement membrane underlying the inner wall of Schlemms canal. Application of shTNC lentivirus to human and porcine anterior segments in perfusion culture did not significantly affect outflow rate. Although TNC was upregulated in response to pressure, there was no difference in outflow rate when shTNC-silenced anterior segments were subjected to elevated pressure. Furthermore, IOPs and CCTs were not significantly different between TNC(-/-) or TNX(-/-) and wild-type mice. CONCLUSIONS TNC does not appear to contribute directly to outflow resistance. However, TNC immunolocalization in the JCT of adult human eyes suggests that certain areas of the TM are being continuously remodeled with or without an IOP increase.


Bone | 2016

Bone matrix hypermineralization in prolyl-3 hydroxylase 1 deficient mice

Nadja Fratzl-Zelman; Hans Peter Bächinger; Janice A. Vranka; Paul Roschger; Klaus Klaushofer; Frank Rauch

Lack of prolyl 3-hydroxylase 1 (P3H1) due to mutations in P3H1 results in severe forms of recessive osteogenesis imperfecta. In the present study, we investigated the bone tissue characteristics of P3H1 null mice. Histomorphometric analyses of cancellous bone in the proximal tibia and lumbar vertebra in 1-month and 3-month old mice demonstrated that P3H1 deficient mice had low trabecular bone volume and low mineral apposition rate, but normal osteoid maturation time and normal osteoblast and osteoclast surfaces. Quantitative backscattered electron imaging revealed that the bone mineralization density distribution was shifted towards higher values, indicating hypermineralization of bone matrix. It thus appears that P3H1 deficiency leads to decreased deposition of extracellular matrix by osteoblasts and increased incorporation of mineral into the matrix.


Investigative Ophthalmology & Visual Science | 2017

Estimating Human Trabecular Meshwork Stiffness by Numerical Modeling and Advanced OCT Imaging

Ke Wang; Murray Johnstone; Chen Xin; Shaozhen Song; Steven Padilla; Janice A. Vranka; Ted S. Acott; Kai Zhou; Stephen A. Schwaner; Ruikang K. Wang; Todd Sulchek; C. Ross Ethier

Purpose The purpose of this study was to estimate human trabecular meshwork (hTM) stiffness, thought to be elevated in glaucoma, using a novel indirect approach, and to compare results with direct en face atomic force microscopy (AFM) measurements. Methods Postmortem human eyes were perfused to measure outflow facility and identify high- and low-flow regions (HF, LF) by tracer. Optical coherence tomography (OCT) images were obtained as Schlemms canal luminal pressure was directly manipulated. TM stiffness was deduced by an inverse finite element modeling (FEM) approach. A series of AFM forcemaps was acquired along a line traversing the anterior angle on a radially cut flat-mount corneoscleral wedge with TM facing upward. Results The elastic modulus of normal hTM estimated by inverse FEM was 70 ± 20 kPa (mean ± SD), whereas glaucomatous hTM was slightly stiffer (98 ± 19 kPa). This trend was consistent with TM stiffnesses measured by AFM: normal hTM stiffness = 1.37 ± 0.56 kPa, which was lower than glaucomatous hTM stiffness (2.75 ± 1.19 kPa). None of these differences were statistically significant. TM in HF wedges was softer than that in LF wedges for both normal and glaucomatous eyes based on the inverse FEM approach but not by AFM. Outflow facility was significantly correlated with TM stiffness estimated by FEM in six human eyes (P = 0.018). Conclusions TM stiffness is higher, but only modestly so, in glaucomatous patients. Outflow facility in both normal and glaucomatous human eyes appears to associate with TM stiffness. This evidence motivates further studies to investigate factors underlying TM biomechanical property regulation.


Experimental Eye Research | 2017

Pressure-induced expression changes in segmental flow regions of the human trabecular meshwork

Janice A. Vranka; Ted S. Acott

ABSTRACT Elevated intraocular pressure (IOP) is thought to create distortion or stretching of the juxtacanalicular and Schlemms canal cells and their extracellular matrix (ECM) leading to a cascade of events that restore IOP to normal levels, a process termed IOP homeostasis. The ECM of the trabecular meshwork (TM) is intricately involved in the regulation of outflow resistance and IOP homeostasis, as matrix metalloproteinase (MMP)‐initiated ECM turnover in the TM is necessary to maintain outflow facility. Previous studies have shown ECM gene expression and mRNA splice form differences in TM cells in response to sustained stretch, implicating their involvement in the dynamic process of IOP homeostasis. The observation that outflow is segmental around the circumference of the eye adds another layer of complexity to understanding the molecular events necessary to maintaining proper outflow facility. The aim of this work was to identify molecular expression differences between segmental flow regions of the TM from anterior segments perfused at either physiological or elevated pressure. Human anterior segments were perfused in an ex vivo model system, TM tissues were extracted and quantitative PCR arrays were performed. Comparisons were made between high flow and low flow regions of the TM from anterior segments perfused either at normal (8.8 mmHg) or at elevated (17.6 mmHg) perfusion pressure for 48 h. The results are presented here as independent sets: 1) fold change gene expression between segmental flow regions at a single perfusion pressure, and 2) fold change gene expression in response to elevated perfusion pressure in a single flow region. Multiple genes from the following functional families were found to be differentially expressed in segmental regions and in response to elevated pressure: collagens, ECM glycoproteins including matricellular proteins, ECM receptors such as integrins and adhesion molecules and ECM regulators, such as matrix metalloproteinases. In general, under normal perfusion pressure, more ECM genes were enriched in the high flow regions than in the low flow regions of the TM, whereas more ECM genes were found to be enriched in low flow regions of the TM in response to elevated perfusion pressure. Thus it appears that a limited subset of ECM genes is differentially regulated in both high and low flow regions and in response to elevated pressure. Some of these same ECM genes have previously been shown to be involved in the pressure response of stretched TM cells supporting their central role in IOP homeostasis. In general, different ECM gene family members are called upon to produce the response to elevated pressure in different segmental regions of the TM. HIGHLIGHTSECM genes are differentially expressed in high flow versus low flow regions.A set of ECM genes is differentially expressed in response to elevated pressure.ECM genes in segmental flow regions have differential responses to pressure.ECM turnover in response to elevated pressure is critical to IOP homeostasis.ECM remodeling in response to elevated pressure is part of IOP homeostasis.

Collaboration


Dive into the Janice A. Vranka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Ross Ethier

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Peter Bächinger

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge