Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janice C. Pedersen is active.

Publication


Featured researches published by Janice C. Pedersen.


Emerging Infectious Diseases | 2004

Recombination Resulting in Virulence Shift in Avian Influenza Outbreak, Chile

David L. Suarez; Dennis A. Senne; Jill Banks; Ian H. Brown; Steve C. Essen; Chang-Won Lee; R. J. Manvell; Christian Mathieu-Benson; Valentina Moreno; Janice C. Pedersen; Brundaban Panigrahy; Hernán Rojas; Erica Spackman; D. J. Alexander

Influenza A viruses occur worldwide in wild birds and are occasionally associated with outbreaks in commercial chickens and turkeys. However, avian influenza viruses have not been isolated from wild birds or poultry in South America. A recent outbreak in chickens of H7N3 low pathogenic avian influenza (LPAI) occurred in Chile. One month later, after a sudden increase in deaths, H7N3 highly pathogenic avian influenza (HPAI) virus was isolated. Sequence analysis of all eight genes of the LPAI virus and the HPAI viruses showed minor differences between the viruses except at the hemagglutinin (HA) cleavage site. The LPAI virus had a cleavage site similar to other low pathogenic H7 viruses, but the HPAI isolates had a 30 nucleotide insert. The insertion likely occurred by recombination between the HA and nucleoprotein genes of the LPAI virus, resulting in a virulence shift. Sequence comparison of all eight gene segments showed the Chilean viruses were also distinct from all other avian influenza viruses and represent a distinct South American clade.


Journal of Clinical Microbiology | 2004

Development of a Real-Time Reverse-Transcription PCR for Detection of Newcastle Disease Virus RNA in Clinical Samples

Mark G. Wise; David L. Suarez; Bruce S. Seal; Janice C. Pedersen; Dennis A. Senne; Daniel J. King; Darrell R. Kapczynski; Erica Spackman

ABSTRACT A real-time reverse-transcription PCR (RRT-PCR) was developed to detect avian paramyxovirus 1 (APMV-1) RNA, also referred to as Newcastle disease virus (NDV), in clinical samples from birds. The assay uses a single-tube protocol with fluorogenic hydrolysis probes. Oligonucleotide primers and probes were designed to detect sequences from a conserved region of the matrix protein (M) gene that recognized a diverse set (n = 44) of APMV-1 isolates. A second primer-probe set was targeted to sequences in the fusion protein (F) gene that code for the cleavage site and detect potentially virulent NDV isolates. A third set, also directed against the M gene, was specific for the North American (N.A.) pre-1960 genotype that includes the common vaccine strains used in commercial poultry in the United States. The APMV-1 M gene, N.A. pre-1960 M gene, and F gene probe sets were capable of detecting approximately 103, 102, and 104 genome copies, respectively, with in vitro-transcribed RNA. Both M gene assays could detect approximately 101 50% egg infective doses (EID50), and the F gene assay could detect approximately 103 EID50. The RRT-PCR test was used to examine clinical samples from chickens experimentally infected with the NDV strain responsible for a recent epizootic in the southwestern United States. Overall, a positive correlation was obtained between the RRT-PCR results and virus isolation for NDV from clinical samples.


Journal of Virology | 2007

Phylogenetic Diversity among Low-Virulence Newcastle Disease Viruses from Waterfowl and Shorebirds and Comparison of Genotype Distributions to Those of Poultry-Origin Isolates

L. Mia Kim; Daniel J. King; Phillip E. Curry; David L. Suarez; David E. Swayne; David E. Stallknecht; Richard D. Slemons; Janice C. Pedersen; Dennis A. Senne; Kevin Winker; Claudio L. Afonso

ABSTRACT Low-virulence Newcastle disease viruses (loNDV) are frequently recovered from wild bird species, but little is known about their distribution, genetic diversity, or potential to cause disease in poultry. NDV isolates recovered from cloacal samples of apparently healthy waterfowl and shorebirds (WS) in the United States during 1986 to 2005 were examined for genomic diversity and their potential for virulence (n = 249). In addition 19 loNDV isolates from U.S. live bird markets (LBMs) were analyzed and found to be genetically distinct from NDV used in live vaccines but related to WS-origin NDV. Phylogenetic analysis of the fusion protein identified nine novel genotypes among the class I NDV, and new genomic subgroups were identified among genotypes I and II of the class II viruses. The WS-origin viruses exhibited broad genetic and antigenic diversity, and some WS genotypes displayed a closer phylogenetic relationship to LBM-origin NDV. All NDV were predicted to be lentogenic based upon sequencing of the fusion cleavage site, intracerebral pathogenicity index, or mean death time in embryo assays. The USDA real-time reverse transcription-PCR assay, which targets the matrix gene, identified nearly all of the class II NDV tested but failed to detect class I viruses from both LBM and WS. The close phylogenetic proximity of some WS and LBM loNDV suggests that viral transmission may occur among wild birds and poultry; however, these events may occur unnoticed due to the broad genetic diversity of loNDV, the lentogenic presentation in birds, and the limitations of current rapid diagnostic tools.


Virology Journal | 2008

Prevalence of Influenza A viruses in wild migratory birds in Alaska: Patterns of variation in detection at a crossroads of intercontinental flyways

Hon S. Ip; Paul L. Flint; J. Christian Franson; Robert J. Dusek; Dirk V. Derksen; Robert E. Gill; Craig R. Ely; John M. Pearce; Richard B. Lanctot; Steven M. Matsuoka; David B. Irons; Julian B. Fischer; Russell M. Oates; Margaret R. Petersen; Thomas F. Fondell; Deborah A. Rocque; Janice C. Pedersen; Thomas C. Rothe

BackgroundThe global spread of the highly pathogenic avian influenza H5N1 virus has stimulated interest in a better understanding of the mechanisms of H5N1 dispersal, including the potential role of migratory birds as carriers. Although wild birds have been found dead during H5N1 outbreaks, evidence suggests that others have survived natural infections, and recent studies have shown several species of ducks capable of surviving experimental inoculations of H5N1 and shedding virus. To investigate the possibility of migratory birds as a means of H5N1 dispersal into North America, we monitored for the virus in a surveillance program based on the risk that wild birds may carry the virus from Asia.ResultsOf 16,797 birds sampled in Alaska between May 2006 and March 2007, low pathogenic avian influenza viruses were detected in 1.7% by rRT-PCR but no highly pathogenic viruses were found. Our data suggest that prevalence varied among sampling locations, species (highest in waterfowl, lowest in passerines), ages (juveniles higher than adults), sexes (males higher than females), date (highest in autumn), and analytical technique (rRT-PCR prevalence = 1.7%; virus isolation prevalence = 1.5%).ConclusionThe prevalence of low pathogenic avian influenza viruses isolated from wild birds depends on biological, temporal, and geographical factors, as well as testing methods. Future studies should control for, or sample across, these sources of variation to allow direct comparison of prevalence rates.


Emerging Infectious Diseases | 2015

Novel Eurasian Highly Pathogenic Avian Influenza A H5 Viruses in Wild Birds, Washington, USA, 2014

Hon S. Ip; Mia Kim Torchetti; Rocio Crespo; Paul Kohrs; Paul DeBruyn; Kristin Mansfield; Timothy V. Baszler; Lyndon M. Badcoe; Barbara Bodenstein; Valerie I. Shearn-Bochsler; Mary Lea Killian; Janice C. Pedersen; Nichole L. Hines; Thomas Gidlewski; Thomas J. DeLiberto; Jonathan M. Sleeman

Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.


Methods of Molecular Biology | 2008

Hemagglutination-Inhibition Test for Avian Influenza Virus Subtype Identification and the Detection and Quantitation of Serum Antibodies to the Avian Influenza Virus

Janice C. Pedersen

The hemagglutination-inhibition (HI) assay is a classical laboratory procedure for the classification or subtyping of hemagglutinating viruses. For the avian influenza (AI) virus, the HI assay is used to identify the hemagglutinin (H) subtype of an unknown AI virus isolate or the HA subtype specificity of antibodies to AI virus. Since the HI assay is quantitative, it is frequently applied to evaluate the antigenic relationships between different AI virus isolates of the same subtype. The basis of the HI test is inhibition of hemagglutination with subtype-specific antibodies. The HI assay is a relatively inexpensive procedure utilizing standard laboratory equipment, is less technical than molecular tests, and is easily completed within several hours. However, when working with uncharacterized viruses or antibody subtypes, the library of reference reagents required for identifying antigentically distinct AI viruses and/or antibody specificities from multiple lineages of a single hemagglutinin subtype requires extensive laboratory support for the production and optimization of reagents.


Mbio | 2012

Emergence of Fatal Avian Influenza in New England Harbor Seals

Simon J. Anthony; J. A. St. Leger; K. Pugliares; Hon S. Ip; Joseph Chan; Zachary Carpenter; Isamara Navarrete-Macias; Maria Sanchez-Leon; Jeremiah T. Saliki; Janice C. Pedersen; William B. Karesh; Peter Daszak; Raul Rabadan; Teri Rowles; W. I. Lipkin

ABSTRACT From September to December 2011, 162 New England harbor seals died in an outbreak of pneumonia. Sequence analysis of postmortem samples revealed the presence of an avian H3N8 influenza A virus, similar to a virus circulating in North American waterfowl since at least 2002 but with mutations that indicate recent adaption to mammalian hosts. These include a D701N mutation in the viral PB2 protein, previously reported in highly pathogenic H5N1 avian influenza viruses infecting people. Lectin staining and agglutination assays indicated the presence of the avian-preferred SAα-2,3 and mammalian SAα-2,6 receptors in seal respiratory tract, and the ability of the virus to agglutinate erythrocytes bearing either the SAα-2,3 or the SAα-2,6 receptor. The emergence of this A/harbor seal/Massachusetts/1/2011 virus may herald the appearance of an H3N8 influenza clade with potential for persistence and cross-species transmission. IMPORTANCE The emergence of new strains of influenza virus is always of great public concern, especially when the infection of a new mammalian host has the potential to result in a widespread outbreak of disease. Here we report the emergence of an avian influenza virus (H3N8) in New England harbor seals which caused an outbreak of pneumonia and contributed to a U.S. federally recognized unusual mortality event (UME). This outbreak is particularly significant, not only because of the disease it caused in seals but also because the virus has naturally acquired mutations that are known to increase transmissibility and virulence in mammals. Monitoring the spillover and adaptation of avian viruses in mammalian species is critically important if we are to understand the factors that lead to both epizootic and zoonotic emergence. The emergence of new strains of influenza virus is always of great public concern, especially when the infection of a new mammalian host has the potential to result in a widespread outbreak of disease. Here we report the emergence of an avian influenza virus (H3N8) in New England harbor seals which caused an outbreak of pneumonia and contributed to a U.S. federally recognized unusual mortality event (UME). This outbreak is particularly significant, not only because of the disease it caused in seals but also because the virus has naturally acquired mutations that are known to increase transmissibility and virulence in mammals. Monitoring the spillover and adaptation of avian viruses in mammalian species is critically important if we are to understand the factors that lead to both epizootic and zoonotic emergence.


Journal of Clinical Microbiology | 2004

Phylogenetic Relationships among Virulent Newcastle Disease Virus Isolates from the 2002-2003 Outbreak in California and Other Recent Outbreaks in North America

Janice C. Pedersen; Dennis A. Senne; Peter R. Woolcock; Hailu Kinde; Daniel J. King; Mark G. Wise; Brundaban Panigrahy; Bruce S. Seal

ABSTRACT Isolates from the 2002-2003 virulent Newcastle disease virus (v-NDV) outbreak in southern California, Nevada, Arizona, and Texas in the United States were compared to each other along with recent v-NDV isolates from Mexico and Central America and reference avian paramyxovirus type 1 strains. Nucleotide sequencing and phylogenetic analyses were conducted on a 1,195-base genomic segment composing the 3′ region of the matrix (M) protein gene and a 5′ portion of the fusion (F) protein gene including the M-F intergenic region. This encompasses coding sequences for the nuclear localization signal of the M protein and the F protein cleavage activation site. A dibasic amino acid motif was present at the predicted F protein cleavage activation site in all v-NDVs, including the California 2002-2003, Arizona, Nevada, Texas, Mexico, and Central America isolates. Phylogenetic analyses demonstrated that the California 2002-2003, Arizona, Nevada, and Texas viruses were most closely related to isolates from Mexico and Central America. An isolate from Texas obtained during 2003 appeared to represent a separate introduction of v-NDV into the United States, as this virus was even more closely related to the Mexico 2000 isolates than the California, Arizona, and Nevada viruses. The close phylogenetic relationship between the recent 2002-2003 U.S. v-NDV isolates and those viruses from countries geographically close to the United States warrants continued surveillance of commercial and noncommercial poultry for early detection of highly virulent NDV.


Avian Diseases | 2000

Pathogenicity of West Nile Virus in Chickens

D. A. Senne; Janice C. Pedersen; D. L. Hutto; W. D. Taylor; B. J. Schmitt; B. Panigrahy

In the fall of 1999, West Nile virus (WNV) was isolated for the first time in the Western Hemisphere during an outbreak of neurologic disease in humans, horses, and wild and zoo birds in the northeastern United States. Chickens are a potential reservoir for WNV, and little is known about the pathogenicity of WNV in domestic chickens. Seven-week-old chickens derived from a specific-pathogen-free flock were inoculated subcutaneously with 1.8 x 10(3) 50% tissue culture infectious dose of a crow isolate of WNV in order to observe clinical signs and evaluate the viremic phase, gross and microscopic lesions, contact transmission, and immunologic response. There were no observable clinical signs in the WNV-inoculated chickens during the 21-day observation period. However, histopathologic examination of tissues revealed myocardial necrosis, nephritis, and pneumonitis at 5 and 10 days postinoculation (DPI); moderate to severe nonsuppurative encephalitis also was observed in brain tissue from one of four inoculated birds examined at 21 DPI. WNV was recovered from blood plasma for up to 8 DPI. Virus titers as high as 10(5)/ml in plasma were observed at 4 DPI. Fecal shedding of virus was detected in cloacal swabs on 4 and 5 DPI only. The WNV also was isolated from myocardium, spleen, kidney, lung, and intestine collected from chickens euthanatized at 3, 5, and 10 DPI. No virus was isolated from inoculated chickens after 10 DPI. Antibodies specific to WNV were detected in inoculated chickens as early as 5 DPI by the plaque reduction neutralization test and 7 DPI by the indirect fluorescent antibody test. Chickens placed in contact with inoculated chickens at 1 DPI lacked WNV-specific antibodies, and no WNV was isolated from their blood plasma or cloacal swabs throughout the 21 days of the experiment.


Avian Diseases | 2002

Avian Influenza Virus Subtypes Inside and Outside the Live Bird Markets, 1993–2000: A Spatial and Temporal Relationship

Brundaban Panigrahy; Dennis A. Senne; Janice C. Pedersen

SUMMARY. Between 1993 and 2000, gallinaceous birds, waterfowl, and environmental specimens from the live bird markets (LBMs) of the northeastern United States and non-LBM premises were tested for the presence of avian influenza virus (AIV), pathogenic properties of AIV subtypes, especially of hemagglutinin (H) subtypes H5 and H7, and a possible association between LBM and non-LBM infections. Ten H subtypes of AIV were isolated from the LBM specimens: H1, H2, H3, H4, H5, H6, H7, H9, H10, and H11. During this period, the 10 subtypes also were isolated from birds in non-LBM premises. In the LBMs, subtypes H2, H3, H4, H6, H7, and H11 were present for 5–8 yr despite efforts to clean and disinfect the premises. The H5 or H7 subtypes present during the same year in both LBMs and non-LBMs within a state or in contiguous states were (subtype/year): H5N2/1993, 1999, and H7N2/1994–99. The AIV subtypes including the H5 and H7 that were evaluated for pathogenicity in chickens were low pathogenic. The deduced amino acid sequence at the H cleavage site of H5 and H7 subtypes was consistent with those of low pathogenic AIV. Although the H5N2 and H7N2 subtypes remained low pathogenic, they did undergo mutations and acquired an additional basic amino acid at the H cleavage site; however, the minimum number of basic amino acids in correct sequence (B-X-B-R, where B = basic amino acid, X = need not be basic amino acid, and R = arginine) required for high pathogenicity was lacking. A low pathogenic H5 or H7 subtype may become highly pathogenic by acquiring additional basic amino acids at the H cleavage site. The LBMs have been and will likely continue to be a source of AIV for commercial poultry.

Collaboration


Dive into the Janice C. Pedersen's collaboration.

Top Co-Authors

Avatar

Dennis A. Senne

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Brundaban Panigrahy

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hon S. Ip

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Mary Lea Killian

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Claudio L. Afonso

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

David L. Suarez

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Erica Spackman

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Patti J. Miller

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Leonardo Susta

Ontario Veterinary College

View shared research outputs
Researchain Logo
Decentralizing Knowledge