Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janne J. Koskimäki is active.

Publication


Featured researches published by Janne J. Koskimäki.


Plant Physiology | 2010

A SQUAMOSA MADS-box gene involved in the regulation of anthocyanin accumulation in bilberry fruits

Laura Jaakola; Mervin Poole; Matthew O. Jones; Terttu Kämäräinen-Karppinen; Janne J. Koskimäki; Anja Hohtola; Hely Häggman; Paul D. Fraser; Kenneth Manning; Graham J. King; Helen Thomson; Graham B. Seymour

Anthocyanins are important health-promoting phytochemicals that are abundant in many fleshy fruits. Bilberry (Vaccinium myrtillus) is one of the best sources of these compounds. Here, we report on the expression pattern and functional analysis of a SQUAMOSA-class MADS box transcription factor, VmTDR4, associated with anthocyanin biosynthesis in bilberry. Levels of VmTDR4 expression were spatially and temporally linked with color development and anthocyanin-related gene expression. Virus-induced gene silencing was used to suppress VmTDR4 expression in bilberry, resulting in substantial reduction in anthocyanin levels in fully ripe fruits. Chalcone synthase was used as a positive control in the virus-induced gene silencing experiments. Additionally, in sectors of fruit tissue in which the expression of the VmTDR4 gene was silenced, the expression of R2R3 MYB family transcription factors related to the biosynthesis of flavonoids was also altered. We conclude that VmTDR4 plays an important role in the accumulation of anthocyanins during normal ripening in bilberry, probably through direct or indirect control of transcription factors belonging to the R2R3 MYB family.


European Journal of Plant Pathology | 2009

Flavonoid biosynthesis and degradation play a role in early defence responses of bilberry (Vaccinium myrtillus) against biotic stress

Janne J. Koskimäki; Juho Hokkanen; Laura Jaakola; Marja Suorsa; Ari Tolonen; Sampo Mattila; Anna Maria Pirttilä; Anja Hohtola

Bilberry (Vaccinium myrtillus) represents one of the richest flavonoid sources among plants. Flavonoids play variable, species-dependent roles in plant defences. In bilberry, flavonoid metabolism is activated in response to solar radiation but not against mechanical injury. In this paper, the defence reaction and biosynthesis of phenolic compounds of bilberry was studied after infection by a fungal endophyte (Paraphaeosphaeria sp.) and a pathogen (Botrytis cinerea). The defence response of bilberry was faster against the endophyte than the pathogen. All flavonoid biosynthesis genes tested were activated by each infection. Biosynthesis and accumulation of phenolic acids, flavan-3-ols and oligomeric proanthocyanidins were clearly elevated in both infected samples. Infection by the pathogen promoted specifically accumulation of epigallocatechin, quercetin-3-glucoside, quercetin-3-O-α-rhamnoside, quercetin-3-O-(4”-HMG)-R-rhamnoside, chlorogenic acid and coumaroyl quinic acid. The endophyte-infected plants had a higher content of quercetin-3-glucuronide and coumaroyl iridoid. Therefore, accumulation of individual phenolic compounds could be specific for each infection. Quantity of insoluble proanthocyanidins was the highest in control plants, suggesting that they might act as storage compounds and become activated by degradation upon infection.


Plant Cell Tissue and Organ Culture | 2008

Role of origin and endophyte infection in browning of bud-derived tissue cultures of Scots pine (Pinus sylvestris L.)

Anna Maria Pirttilä; Olga Podolich; Janne J. Koskimäki; Esa Hohtola; Atria Hohtola

Callus tissues originating from buds of mature Scots pine (Pinus sylvestris L.) trees exhibit the typical problem of browning, which leads to degeneration and death of the tissues. The effects of medium, origin (tree and location) and endophyte infection were studied on the browning and growth of bud-derived tissue cultures. The calli growing on medium with higher kinetin content and source of organic nitrogen, and originating from the southern location grew better and exhibited less browning. Endophytic microbial cells were detected in the brown callus tissues by transmission electron microscopy. The natural endophyte infection frequency of Scots pine buds was studied and found dependent on the tree, but not on the location. A well-growing, green callus line was artificially infected by an endophytic strain of Methylobacterium extorquens, and browning was not observed on solid media compared to the uninfected control clones of the same callus. However, suspension cultures started from the infected callus died faster than cultures started from the uninfected callus. The endophyte species composition and plant genotype together with tissue culture conditions are the key factors for gaining plant tissue cultures with high regeneration capacity.


Tree Physiology | 2014

Interaction with ectomycorrhizal fungi and endophytic Methylobacterium affects nutrient uptake and growth of pine seedlings in vitro

Johanna Pohjanen; Janne J. Koskimäki; Suvi Sutela; Pavlo Ardanov; Marja Suorsa; Karoliina Niemi; Tytti Sarjala; Hely Häggman; Anna Maria Pirttilä

Tissues of Scots pine (Pinus sylvestris L.) contain several endophytic microorganisms of which Methylobacterium extorquens DSM13060 is a dominant species throughout the year. Similar to other endophytic bacteria, M. extorquens is able to colonize host plant tissues without causing any symptoms of disease. In addition to endophytic bacteria, plants associate simultaneously with a diverse set of microorganisms. Furthermore, plant-colonizing microorganisms interact with each other in a species- or strain-specific manner. Several studies on beneficial microorganisms interacting with plants have been carried out, but few deal with interactions between different symbiotic organisms and specifically, how these interactions affect the growth and development of the host plant. Our aim was to study how the pine endophyte M. extorquens DSM13060 affects pine seedlings and how the co-inoculation with ectomycorrhizal (ECM) fungi [Suillus variegatus (SV) or Pisolithus tinctorius (PT)] alters the response of Scots pine. We determined the growth, polyamine and nutrient contents of inoculated and non-inoculated Scots pine seedlings in vitro. Our results show that M. extorquens is able to improve the growth of seedlings at the same level as the ECM fungi SV and PT do. The effect of co-inoculation using different symbiotic organisms was seen in terms of changes in growth and nutrient uptake. Inoculation using M. extorquens together with ECM fungi improved the growth of the host plant even more than single ECM inoculation. Symbiotic organisms also had a strong effect on the potassium content of the seedling. The results indicate that interaction between endophyte and ECM fungus is species dependent, leading to increased or decreased nutrient content and growth of pine seedlings.


Environmental Microbiology Reports | 2010

Mycobacteria are hidden endophytes in the shoots of rock plant [Pogonatherum paniceum (Lam.) Hack.] (Poaceae).

Janne J. Koskimäki; Elina Hankala; Marja Suorsa; Sannakajsa Nylund; Anna Maria Pirttilä

A mycobacterium was isolated from micropropagated Pogonatherum paniceum and identified as a close relative of Mycobacterium cookii. The endophyte diversity in the shoots of potted and micropropagated P. paniceum plants was studied by culture-independent techniques. Group- and strain-specific PCR demonstrated that the P. paniceum plants harboured the isolated Mycobacterium strain as a minority. Altogether 101 clones of the PCR products were sequenced. The shoots of potted P. paniceum plants harboured unculturable endophytes in the families Phyllobacteriaceae, Hyphomicrobiaceae, Sphingobacteriaceae, Enterobacteriaceae, Alcaligenaceae and Mycobacteriaceae. Among the unculturable Mycobacteriaceae strains related to Mycobacterium chubuense, M. poriferae, M. obuense, M. fortuitum, M. neoaurum, M. diernhoferi, M. intracellulare and M. cookii were identified. Three unique sequences that clustered with M. llatzarense and M. mucogenicum were identified in micropropagated plants. According to the results, the shoots and micropropagated tissues of rock plant are inhabited by mycobacteria, which should stimulate further studies on the diversity of unculturable mycobacteria in edible crop plants.


Mbio | 2015

The Intracellular Scots Pine Shoot Symbiont Methylobacterium extorquens DSM13060 Aggregates around the Host Nucleus and Encodes Eukaryote-Like Proteins

Janne J. Koskimäki; Anna Maria Pirttilä; Emmi-Leena Ihantola; Outi Halonen; A. Carolin Frank

ABSTRACT Endophytes are microbes that inhabit plant tissues without any apparent signs of infection, often fundamentally altering plant phenotypes. While endophytes are typically studied in plant roots, where they colonize the apoplast or dead cells, Methylobacterium extorquens strain DSM13060 is a facultatively intracellular symbiont of the meristematic cells of Scots pine (Pinus sylvestris L.) shoot tips. The bacterium promotes host growth and development without the production of known plant growth-stimulating factors. Our objective was to examine intracellular colonization by M. extorquens DSM13060 of Scots pine and sequence its genome to identify novel molecular mechanisms potentially involved in intracellular colonization and plant growth promotion. Reporter construct analysis of known growth promotion genes demonstrated that these were only weakly active inside the plant or not expressed at all. We found that bacterial cells accumulate near the nucleus in intact, living pine cells, pointing to host nuclear processes as the target of the symbionts activity. Genome analysis identified a set of eukaryote-like functions that are common as effectors in intracellular bacterial pathogens, supporting the notion of intracellular bacterial activity. These include ankyrin repeats, transcription factors, and host-defense silencing functions and may be secreted by a recently imported type IV secretion system. Potential factors involved in host growth include three copies of phospholipase A2, an enzyme that is rare in bacteria but implicated in a range of plant cellular processes, and proteins putatively involved in gibberellin biosynthesis. Our results describe a novel endophytic niche and create a foundation for postgenomic studies of a symbiosis with potential applications in forestry and agriculture. IMPORTANCE All multicellular eukaryotes host communities of essential microbes, but most of these interactions are still poorly understood. In plants, bacterial endophytes are found inside all tissues. M. extorquens DSM13060 occupies an unusual niche inside cells of the dividing shoot tissues of a pine and stimulates seedling growth without producing cytokinin, auxin, or other plant hormones commonly synthesized by plant-associated bacteria. Here, we tracked the bacteria using a fluorescent tag and confocal laser scanning microscopy and found that they localize near the nucleus of the plant cell. This prompted us to sequence the genome and identify proteins that may affect host growth by targeting processes in the host cytoplasm and nucleus. We found many novel genes whose products may modulate plant processes from within the plant cell. Our results open up new avenues to better understand how bacteria assist in plant growth, with broad implications for plant science, forestry, and agriculture. All multicellular eukaryotes host communities of essential microbes, but most of these interactions are still poorly understood. In plants, bacterial endophytes are found inside all tissues. M. extorquens DSM13060 occupies an unusual niche inside cells of the dividing shoot tissues of a pine and stimulates seedling growth without producing cytokinin, auxin, or other plant hormones commonly synthesized by plant-associated bacteria. Here, we tracked the bacteria using a fluorescent tag and confocal laser scanning microscopy and found that they localize near the nucleus of the plant cell. This prompted us to sequence the genome and identify proteins that may affect host growth by targeting processes in the host cytoplasm and nucleus. We found many novel genes whose products may modulate plant processes from within the plant cell. Our results open up new avenues to better understand how bacteria assist in plant growth, with broad implications for plant science, forestry, and agriculture.


Biologia Plantarum | 2008

Effect of wounding on chalcone synthase and pathogenesis related PR-10 gene expression and content of phenolic compounds in bilberry leaves

Laura Jaakola; Janne J. Koskimäki; K. R. Riihinen; Anne Tolvanen; Anja Hohtola

The influence of artificial wounding on biosynthesis of flavonoids and hydroxycinnamic acids was studied in bilberry leaves using two separate wounding experiments. In the first experiment bilberry leaves were wounded by cutting. The expression of the first gene from flavonoid pathway, chalcone synthase (CHS) and a wound induced pathogenesis related PR-10 gene was analysed from samples collected immediately and after 3, 6, 24 h and 4 d from the wounding treatment. In the second experiment annual shoots were removed. Proanthocyanidins, flavonol glycosides and hydroxycinnamic acids were quantified in leaf samples after 0–5 d (experiment 1) and 5 weeks (experiment 2) from the treatment. In the first experiment, no change was observed in the expression of CHS whereas increase in expression of PR-10 gene was detected after 6 h of wounding treatment. In both experiments, the contents of flavonol glycosides and hydroxycinnamic acids were not influenced by the wounding treatment and the contents of proanthocyanidins were decreased.


BMC Plant Biology | 2009

Phenolic compounds in ectomycorrhizal interaction of lignin modified silver birch.

Suvi Sutela; Karoliina Niemi; Jaanika Edesi; Tapio Laakso; Pekka Saranpää; Jaana Vuosku; Riina Mäkelä; Heidi Tiimonen; Vincent L. Chiang; Janne J. Koskimäki; Marja Suorsa; Riitta Julkunen-Tiitto; Hely Häggman

BackgroundThe monolignol biosynthetic pathway interconnects with the biosynthesis of other secondary phenolic metabolites, such as cinnamic acid derivatives, flavonoids and condensed tannins. The objective of this study is to evaluate whether genetic modification of the monolignol pathway in silver birch (Betula pendula Roth.) would alter the metabolism of these phenolic compounds and how such alterations, if exist, would affect the ectomycorrhizal symbiosis.ResultsSilver birch lines expressing quaking aspen (Populus tremuloides L.) caffeate/5-hydroxyferulate O-methyltransferase (PtCOMT) under the 35S cauliflower mosaic virus (CaMV) promoter showed a reduction in the relative expression of a putative silver birch COMT (BpCOMT) gene and, consequently, a decrease in the lignin syringyl/guaiacyl composition ratio. Alterations were also detected in concentrations of certain phenolic compounds. All PtCOMT silver birch lines produced normal ectomycorrhizas with the ectomycorrhizal fungus Paxillus involutus (Batsch: Fr.), and the formation of symbiosis enhanced the growth of the transgenic plants.ConclusionThe down-regulation of BpCOMT in the 35S-PtCOMT lines caused a reduction in the syringyl/guaiacyl ratio of lignin, but no significant effect was seen in the composition or quantity of phenolic compounds that would have been caused by the expression of PtCOMT under the 35S or UbB1 promoter. Moreover, the detected alterations in the composition of lignin and secondary phenolic compounds had no effect on the interaction between silver birch and P. involutus.


Nature Chemical Biology | 2016

Methyl-esterified 3-hydroxybutyrate oligomers protect bacteria from hydroxyl radicals

Janne J. Koskimäki; Marena Kajula; Juho Hokkanen; Emmi-Leena Ihantola; Jong H. Kim; Heidi Hautajärvi; Elina Hankala; Marko Suokas; Johanna Pohjanen; Olga Podolich; Natalia Kozyrovska; Ari Turpeinen; Mirva Pääkkönen; Sampo Mattila; Bruce Campbell; Anna Maria Pirttilä

Bacteria rely mainly on enzymes, glutathione and other low-molecular weight thiols to overcome oxidative stress. However, hydroxyl radicals are the most cytotoxic reactive oxygen species, and no known enzymatic system exists for their detoxification. We now show that methyl-esterified dimers and trimers of 3-hydroxybutyrate (ME-3HB), produced by bacteria capable of polyhydroxybutyrate biosynthesis, have 3-fold greater hydroxyl radical-scavenging activity than glutathione and 11-fold higher activity than vitamin C or the monomer 3-hydroxybutyric acid. We found that ME-3HB oligomers protect hypersensitive yeast deletion mutants lacking oxidative stress-response genes from hydroxyl radical stress. Our results show that phaC and phaZ, encoding polymerase and depolymerase, respectively, are activated and polyhydroxybutyrate reserves are degraded for production of ME-3HB oligomers in bacteria infecting plant cells and exposed to hydroxyl radical stress. We found that ME-3HB oligomer production is widespread, especially in bacteria adapted to stressful environments. We discuss how ME-3HB oligomers could provide opportunities for numerous applications in human health.


Archive | 2014

Interactions of Meristem-Associated Endophytic Bacteria

Johanna Pohjanen; Janne J. Koskimäki; Anna Maria Pirttilä

Generally, all endophytes should be considered as a community that interacts with other symbiotic organisms, such as mycorrhiza. Even though an endophyte may colonize the plant systematically, communities colonizing the plant shoots normally differ to a degree from the root-associated endophytes. Meristem-associated shoot endophytic bacteria are often found as contaminants in plant tissue cultures started from shoot tips (buds) or embryos. Whereas root endophytic bacteria are reasonably well studied with respect to location and interactions with the host, not much is known about endophytes associated with shoot meristems. Endophytic bacteria have been localized in the meristematic tissues of buds and flowers by in situ hybridization and transmission electron microscopy. Meristem-associated endophytes may share some growth-promoting traits with the root endophytes, but likely additional mechanisms of actions exist. For example, such endophytes can produce adenine derivatives that induce growth of the host tissue. These endophytes may also affect the plant development by various ways. Some of them can co-synthesize secondary metabolites together with the plant host. Many more mechanisms remain to be determined by methods such as genomics and metabolomics, which are valuable tools for characterizing the interactions between the plant and endophytic bacteria.

Collaboration


Dive into the Janne J. Koskimäki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emmi-Leena Ihantola

University of Eastern Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge