Janneke Balk
John Innes Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Janneke Balk.
The Plant Cell | 2001
Janneke Balk; Christopher J. Leaver
In mammals, mitochondria have been shown to play a key intermediary role in apoptosis, a morphologically distinct form of programmed cell death (PCD), for example, through the release of cytochrome c, which activates a proteolytic enzyme cascade, resulting in specific nuclear DNA degradation and cell death. In plants, PCD is a feature of normal development, including the penultimate stage of anther development, leading to dehiscence and pollen release. However, there is little evidence that plant mitochondria are involved in PCD. In a wide range of plant species, anther and/or pollen development is disrupted in a class of mutants termed CMS (for cytoplasmic male sterility), which is associated with mutations in the mitochondrial genome. On the basis of the manifestation of a number of morphological and biochemical markers of apoptosis, we have shown that the PET1-CMS cytoplasm in sunflower causes premature PCD of the tapetal cells, which then extends to other anther tissues. These features included cell condensation, oligonucleosomal cleavage of nuclear DNA, separation of chromatin into delineated masses, and initial persistence of mitochondria. In addition, immunocytochemical analysis revealed that cytochrome c was released partially from the mitochondria into the cytosol of tapetal cells before the gross morphological changes associated with PCD. The decrease in cytochrome c content in mitochondria isolated from male sterile florets preceded a decrease in the integrity of the outer mitochondrial membrane and respiratory control ratio. Our data suggest that plant mitochondria, like mammalian mitochondria, play a key role in the induction of PCD. The tissue-specific nature of the CMS phenotype is discussed with regard to cellular respiratory demand and PCD during normal anther development.
FEBS Letters | 1999
Janneke Balk; Christopher J. Leaver; Paul F. McCabe
In mammals mitochondria play a critical role in the activation of programmed cell death (PCD). One mechanism by which mitochondria can commit a cell to death is by translocating cytochrome c into the cytosol where it activates cell death caspases. However, release of cytochrome c does not appear to be a feature of caspase activation in nematodes or insects, similarly, there is no evidence for cytochrome c release during the caspase‐independent PCD that can occur in Dictyostelium cells. In an attempt to understand the underlying regulation of PCD in plants we investigated if mitochondrial components were released into the cytosol when plant cells are induced to undergo PCD. PCD was triggered in cucumber cotyledons by subjecting them to a short 55°C heat treatment. This heat treatment has previously been shown to trigger PCD in other plant species and cell death was confirmed in cucumber using morphological (cellular condensation) and molecular (DNA ‘laddering’) markers of PCD. We present evidence that, unlike Dictyostelium and invertebrate PCDs, cytochrome c release is an early event in plant PCD. The mitochondrial release of cytochrome c following a PCD‐inducing stimulus in both plants and mammals suggests the pathways have been conserved during evolution, having been derived from ancestral unicellular death programmes.
Journal of Biological Chemistry | 2005
Julian C. Rutherford; Luis Ojeda; Janneke Balk; Ulrich Mühlenhoff; Roland Lill; Dennis R. Winge
Two transcriptional activators, Aft1 and Aft2, regulate iron homeostasis in Saccharomyces cerevisiae. These factors induce the expression of iron regulon genes in iron-deficient yeast but are inactivated in iron-replete cells. Iron inhibition of Aft1/Aft2 is abrogated in cells defective for Fe-S cluster biogenesis within the mitochondrial matrix (Chen, O. S., Crisp, R. J., Valachovic, M., Bard, M., Winge, D. R., and Kaplan, J. (2004) J. Biol. Chem. 279, 29513–29518). To determine whether iron sensing by Aft1/Aft2 requires the function of the mitochondrial Fe-S export and cytosolic Fe-S protein assembly systems, we evaluated the expression of the iron regulon in cells depleted of glutathione and in cells depleted of Atm1, Nar1, Cfd1, and Nbp35. The iron regulon is induced in cells depleted of Atm1 with Aft1 largely responsible for the induced gene expression. Aft2 is activated at a later time in Atm1-depleted cells. Likewise, the iron regulon is induced in cells depleted of glutathione. In contrast, repression of NAR1, CFD1, or NBP35 fails to induce the iron regulon despite strong inhibition of cytosolic/nuclear Fe-S protein assembly. Thus, iron sensing by Aft1/Aft2 is not linked to the maturation of cytosolic/nuclear Fe-S proteins, but the mitochondrial inner membrane transporter Atm1 is important to transport the inhibitory signal. Although Aft1 and Aft2 sense a signal emanating from the Fe-S cluster biogenesis pathway, there is no indication that the proteins are inhibited by direct binding of an Fe-S cluster.
The EMBO Journal | 2005
Gyula Kispal; Katalin Sipos; Heike Lange; Zsuzsanna Fekete; Tibor Bedekovics; Tamás Janáky; Jochen Bassler; Daili J. A. Netz; Janneke Balk; Carmen Rotte; Roland Lill
Mitochondria perform a central function in the biogenesis of cellular iron–sulphur (Fe/S) proteins. It is unknown to date why this biosynthetic pathway is indispensable for life, the more so as no essential mitochondrial Fe/S proteins are known. Here, we show that the soluble ATP‐binding cassette (ABC) protein Rli1p carries N‐terminal Fe/S clusters that require the mitochondrial and cytosolic Fe/S protein biogenesis machineries for assembly. Mutations in critical cysteine residues of Rli1p abolish association with Fe/S clusters and lead to loss of cell viability. Hence, the essential character of Fe/S clusters in Rli1p explains the indispensable character of mitochondria in eukaryotes. We further report that Rli1p is associated with ribosomes and with Hcr1p, a protein involved in rRNA processing and translation initiation. Depletion of Rli1p causes a nuclear export defect of the small and large ribosomal subunits and subsequently a translational arrest. Thus, ribosome biogenesis and function are intimately linked to the crucial role of mitochondria in the maturation of the essential Fe/S protein Rli1p.
The EMBO Journal | 2004
Janneke Balk; Antonio J. Pierik; Daili J. A. Netz; Ulrich Mühlenhoff; Roland Lill
The genome of the yeast Saccharomyces cerevisiae encodes the essential protein Nar1p that is conserved in virtually all eukaryotes and exhibits striking sequence similarity to bacterial iron‐only hydrogenases. A human homologue of Nar1p was shown previously to bind prenylated prelamin A in the nucleus. However, yeast neither exhibits hydrogenase activity nor contains nuclear lamins. Here, we demonstrate that Nar1p is predominantly located in the cytosol and contains two adjacent iron–sulphur (Fe/S) clusters. Assembly of its Fe/S clusters crucially depends on components of the mitochondrial Fe/S cluster biosynthesis apparatus such as the cysteine desulphurase Nfs1p, the ferredoxin Yah1p and the ABC transporter Atm1p. Using functional studies in vivo, we show that Nar1p is required for maturation of cytosolic and nuclear, but not of mitochondrial, Fe/S proteins. Nar1p‐depleted cells do not accumulate iron in mitochondria, distinguishing these cells from mutants in components of the mitochondrial Fe/S cluster biosynthesis apparatus. In conclusion, Nar1p represents a crucial, novel component of the emerging cytosolic Fe/S protein assembly machinery that catalyses an essential and ancient process in eukaryotes.
Trends in Plant Science | 2011
Janneke Balk; Marinus Pilon
In plants iron-sulfur (Fe-S) proteins are found in the plastids, mitochondria, cytosol and nucleus, where they are essential for numerous physiological and developmental processes. Recent mutant studies, mostly in Arabidopsis thaliana, have identified three pathways for the assembly of Fe-S clusters. The plastids harbor the SUF (sulfur mobilization) pathway and operate independently, whereas cluster assembly in the cytosol depends on the emerging CIA (cytosolic iron-sulfur cluster assembly) pathway and mitochondria. The latter organelles use the ISC (iron-sulfur cluster) assembly pathway. In all three pathways the assembly process can be divided into a first stage where S and Fe are combined on a scaffold protein, and a second stage in which the Fe-S cluster is transferred to a target protein. The second stage might involve different carrier proteins with specialized functions.
Molecular and Cellular Biology | 2009
Alex D. Sheftel; Oliver Stehling; Antonio J. Pierik; Daili J. A. Netz; Stefan Kerscher; Hans-Peter Elsässer; Ilka Wittig; Janneke Balk; Ulrich Brandt; Roland Lill
ABSTRACT Respiratory complex I (NADH:ubiquinone oxidoreductase) is a large mitochondrial inner membrane enzyme consisting of 45 subunits and 8 iron-sulfur (Fe/S) clusters. While complex I dysfunction is the most common reason for mitochondrial diseases, the assembly of complex I and its Fe/S cofactors remains elusive. Here, we identify the human mitochondrial P-loop NTPase, designated huInd1, that is critically required for the assembly of complex I. huInd1 can bind an Fe/S cluster via a conserved CXXC motif in a labile fashion. Knockdown of huInd1 in HeLa cells by RNA interference technology led to strong decreases in complex I protein and activity levels, remodeling of respiratory supercomplexes, and alteration of mitochondrial morphology. In addition, huInd1 depletion resulted in massive decreases in several subunits (NDUFS1, NDUFV1, NDUFS3, and NDUFA13) of the peripheral arm of complex I, with the concomitant appearance of a 450-kDa subcomplex representing part of the membrane arm. By a novel radiolabeling technique, the amount of iron associated with complex I was also shown to reflect the dependence of this enzyme on huInd1 for assembly. Together, these data identify huInd1 as a new assembly factor for human respiratory complex I with a possible role in the delivery of one or more Fe/S clusters to complex I subunits.
EMBO Reports | 2003
Mohammed Sabar; Dominique Gagliardi; Janneke Balk; Christopher J. Leaver
ORFB is the product of a gene that is conserved in plant mitochondrial genomes, and which, on the basis of sequence motif and structural similarity, is predicted to be the homologue of yeast and mammalian ATP8, part of the FO component of the F1 FO‐ATP synthase. We have shown that, in sunflower, orfB transcripts are edited, increasing the similarity of the predicted protein to ATP8 proteins from non‐plant species. Blue‐native polyacrylamide gel electrophoresis and peptide sequencing confirm that ORFB localizes to the ATP synthase complex. The predicted amino‐terminal 19 amino acids of ORFB are identical to those in the chimeric mitochondrial ORF522 protein, which is associated with cytoplasmic male sterility (CMS) in sunflower. Assays comparing respiratory complexes from a male‐sterile line expressing ORF522 with those from a male‐fertile line show a specific decrease in ATP hydrolysis by the ATP synthase. These observations allow us to propose a mechanism underlying CMS that is associated with the expression of chimeric open reading frames containing part of the orfB gene.
The EMBO Journal | 2008
Katrine Bych; Stefan Kerscher; Daili J. A. Netz; Antonio J. Pierik; Klaus Zwicker; Martijn A. Huynen; Roland Lill; Ulrich Brandt; Janneke Balk
NADH:ubiquinone oxidoreductase (complex I) of the mitochondrial inner membrane is a multi‐subunit protein complex containing eight iron–sulphur (Fe–S) clusters. Little is known about the assembly of complex I and its Fe–S clusters. Here, we report the identification of a mitochondrial protein with a nucleotide‐binding domain, named Ind1, that is required specifically for the effective assembly of complex I. Deletion of the IND1 open reading frame in the yeast Yarrowia lipolytica carrying an internal alternative NADH dehydrogenase resulted in slower growth and strongly decreased complex I activity, whereas the activities of other mitochondrial Fe–S enzymes, including aconitase and succinate dehydrogenase, were not affected. Two‐dimensional gel electrophoresis, in vitro activity tests and electron paramagnetic resonance signals of Fe–S clusters showed that only a minor fraction (∼20%) of complex I was assembled in the ind1 deletion mutant. Using in vivo and in vitro approaches, we found that Ind1 can bind a [4Fe–4S] cluster that was readily transferred to an acceptor Fe–S protein. Our data suggest that Ind1 facilitates the assembly of Fe–S cofactors and subunits of complex I.
Molecular and Cellular Biology | 2005
Janneke Balk; Daili J. A. Netz; Katharina Tepper; Antonio J. Pierik; Roland Lill
ABSTRACT The assembly of cytosolic and nuclear iron-sulfur (Fe/S) proteins in yeast is dependent on the iron-sulfur cluster assembly and export machineries in mitochondria and three recently identified extramitochondrial proteins, the P-loop NTPases Cfd1 and Nbp35 and the hydrogenase-like Nar1. However, the molecular mechanism of Fe/S protein assembly in the cytosol is far from being understood, and more components are anticipated to take part in this process. Here, we have identified and functionally characterized a novel WD40 repeat protein, designated Cia1, as an essential component required for Fe/S cluster assembly in vivo on cytosolic and nuclear, but not mitochondrial, Fe/S proteins. Surprisingly, Nbp35 and Nar1, themselves Fe/S proteins, could assemble their Fe/S clusters in the absence of Cia1, demonstrating that these components act before Cia1. Consequently, Cia1 is involved in a late step of Fe/S cluster incorporation into target proteins. Coimmunoprecipitation assays demonstrated a specific interaction between Cia1 and Nar1. In contrast to the mostly cytosolic Nar1, Cia1 is preferentially localized to the nucleus, suggesting an additional function of Cia1. Taken together, our results indicate that Cia1 is a new member of the cytosolic Fe/S protein assembly (CIA) machinery participating in a step after Nbp35 and Nar1.