Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher J. Leaver is active.

Publication


Featured researches published by Christopher J. Leaver.


Plant Physiology | 1993

Oxidative Stimulation of Glutathione Synthesis in Arabidopsis thaliana Suspension Cultures

Mike J. May; Christopher J. Leaver

A system based on Arabidopsis thaliana suspension cultures was established for the analysis of glutathione (GSH) synthesis in the presence of hydrogen peroxide. Mild oxidative stress was induced by use of the catalase inhibitor, aminotriazole, and its development was monitored by measurement of the oxidative inactivation of aconitase. Addition of 2 mM aminotriazole resulted in a 25% decrease in activity of aconitase over 4 h. During the subsequent 10 h, no further decrease in aconitase activity was measured despite a sustained inhibition of catalase. In combination with our failure to detect significant increases in the level of lipid peroxidation, another marker indicative of oxidative injury, these data suggest that although hydrogen peroxide initially leaked into the cytosol, its accumulation was limited by a cytosolic catalase-independent mechanism. A 4-fold increase in the level of GSH, which was almost exclusively in the reduced form, was observed under the same treatment. To determine to what extent this increase in reduced GSH played a role in limiting the accumulation of hydrogen peroxide in the cytosol, we inhibited GSH synthesis with buthionine sulfoximine (BSO), a specific inhibitor of [gamma]-glutamylcysteine synthetase. No significant oxidative injury was detected as a result of treatment with 50 [mu]M BSO alone, and furthermore, this treatment had no effect on cell viability, However, addition of 2 mM aminotriazole to cells preincubated with 50 [mu]M BSO for 15 h led to a rapid loss of aconitase activity (75% in 4 h), and significant accumulation of products of lipid peroxidation. Within 72 h, cell viability was lost completely. After removal of BSO from the growth medium, GSH levels recovered to normal over a period of 20 h. Addition of 2 mM aminotriazole to cells at different time points during this recovery period demonstrated a strong correlation between the level of reduced GSH and the degree of protection against oxidative injury. These data strongly suggest that the induction of GSH synthesis by an oxidative stimulus plays a crucial role in determining the susceptibility of cells to oxidative stress.


Cell | 1981

The Zea mays Mitochondrial Gene Coding Cytochrome Oxidase Subunit II Has an Intervening Sequence and Does Not Contain TGA Codons

Thomas D. Fox; Christopher J. Leaver

Cross hybridization between maize mitochondrial DNA fragments and a specific yeast mitochondrial DNA probe from the oxi 1 gene has been used to identify and isolate the maize mitochondrial gene coding cytochrome oxidase subunit II, mox 1. The DNA sequence reveals two coding regions separated from each other by a single centrally located intervening sequence. Hybridization of mox 1 DNA probes to mitochondrial RNA from plants shows that te gene is transcribed and indicates that several transcripts are spliced. TGA codons, which code Trp in the mitochondria of all species examined to date, do not occur in this gene. However, alignment of the mox 1 gene sequence with the amino acid sequences of subunit II from other organisms strongly suggests that codon CGG (normally Arg) codes for Trp in maize mitochondria, in addition to the standard Trp codon TGG.


The Plant Cell | 2003

Enzymes of Glycolysis Are Functionally Associated with the Mitochondrion in Arabidopsis Cells

Philippe Giegé; Joshua L. Heazlewood; Ute Roessner-Tunali; A.H. Millar; Alisdair R. Fernie; Christopher J. Leaver; Lee J. Sweetlove

Mitochondria fulfill a wide range of metabolic functions in addition to the synthesis of ATP and contain a diverse array of proteins to perform these functions. Here, we present the unexpected discovery of the presence of the enzymes of glycolysis in a mitochondrial fraction of Arabidopsis cells. Proteomic analyses of this mitochondrial fraction revealed the presence of 7 of the 10 enzymes that constitute the glycolytic pathway. Four of these enzymes (glyceraldehyde-3-P dehydrogenase, aldolase, phosphoglycerate mutase, and enolase) were also identified in an intermembrane space/outer mitochondrial membrane fraction. Enzyme activity assays confirmed that the entire glycolytic pathway was present in preparations of isolated Arabidopsis mitochondria, and the sensitivity of these activities to protease treatments indicated that the glycolytic enzymes are present on the outside of the mitochondrion. The association of glycolytic enzymes with mitochondria was confirmed in vivo by the expression of enolase– and aldolase–yellow fluorescent protein fusions in Arabidopsis protoplasts. The yellow fluorescent protein fluorescence signal showed that these two fusion proteins are present throughout the cytosol but are also concentrated in punctate regions that colocalized with the mitochondrion-specific probe Mitotracker Red. Furthermore, when supplied with appropriate cofactors, isolated, intact mitochondria were capable of the metabolism of 13C-glucose to 13C-labeled intermediates of the trichloroacetic acid cycle, suggesting that the complete glycolytic sequence is present and active in this subcellular fraction. On the basis of these data, we propose that the entire glycolytic pathway is associated with plant mitochondria by attachment to the cytosolic face of the outer mitochondrial membrane and that this microcompartmentation of glycolysis allows pyruvate to be provided directly to the mitochondrion, where it is used as a respiratory substrate.


The Plant Cell | 2001

The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release.

Janneke Balk; Christopher J. Leaver

In mammals, mitochondria have been shown to play a key intermediary role in apoptosis, a morphologically distinct form of programmed cell death (PCD), for example, through the release of cytochrome c, which activates a proteolytic enzyme cascade, resulting in specific nuclear DNA degradation and cell death. In plants, PCD is a feature of normal development, including the penultimate stage of anther development, leading to dehiscence and pollen release. However, there is little evidence that plant mitochondria are involved in PCD. In a wide range of plant species, anther and/or pollen development is disrupted in a class of mutants termed CMS (for cytoplasmic male sterility), which is associated with mutations in the mitochondrial genome. On the basis of the manifestation of a number of morphological and biochemical markers of apoptosis, we have shown that the PET1-CMS cytoplasm in sunflower causes premature PCD of the tapetal cells, which then extends to other anther tissues. These features included cell condensation, oligonucleosomal cleavage of nuclear DNA, separation of chromatin into delineated masses, and initial persistence of mitochondria. In addition, immunocytochemical analysis revealed that cytochrome c was released partially from the mitochondria into the cytosol of tapetal cells before the gross morphological changes associated with PCD. The decrease in cytochrome c content in mitochondria isolated from male sterile florets preceded a decrease in the integrity of the outer mitochondrial membrane and respiratory control ratio. Our data suggest that plant mitochondria, like mammalian mitochondria, play a key role in the induction of PCD. The tissue-specific nature of the CMS phenotype is discussed with regard to cellular respiratory demand and PCD during normal anther development.


The Plant Cell | 1994

Carbon Catabolite Repression Regulates Glyoxylate Cycle Gene Expression in Cucumber.

Ian A. Graham; Katherine J. Denby; Christopher J. Leaver

We have previously proposed that metabolic status is important in the regulation of cucumber malate synthase (MS) and isocitrate lyase (ICL) gene expression during plant development. In this article, we used a cell culture system to demonstrate that intracellular metabolic status does influence expression of both of these genes. Starvation of cucumber cell cultures resulted in the coordinate induction of the expression of MS and ICL genes, and this effect was reversed when sucrose was returned to the culture media. The induction of gene expression was closely correlated with a drop in intracellular sucrose, glucose, and fructose below threshold concentrations, but it was not correlated with a decrease in respiration rate. Glucose, fructose, or raffinose in the culture media also resulted in repression of MS and ICL. Both 2-deoxyglucose and mannose, which are phosphorylated by hexokinase but not further metabolized, specifically repressed MS and ICL gene expression relative to a third glyoxylate cycle gene, malate dehydrogenase. However, the addition of 3-methylglucose, an analog of glucose that is not phosphorylated, did not result in repression of either MS or ICL. It is proposed that the signal giving rise to a change in gene expression originates from the intracellular concentration of hexose sugars or the flux of hexose sugars into glycolysis.


FEBS Letters | 1999

Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants

Janneke Balk; Christopher J. Leaver; Paul F. McCabe

In mammals mitochondria play a critical role in the activation of programmed cell death (PCD). One mechanism by which mitochondria can commit a cell to death is by translocating cytochrome c into the cytosol where it activates cell death caspases. However, release of cytochrome c does not appear to be a feature of caspase activation in nematodes or insects, similarly, there is no evidence for cytochrome c release during the caspase‐independent PCD that can occur in Dictyostelium cells. In an attempt to understand the underlying regulation of PCD in plants we investigated if mitochondrial components were released into the cytosol when plant cells are induced to undergo PCD. PCD was triggered in cucumber cotyledons by subjecting them to a short 55°C heat treatment. This heat treatment has previously been shown to trigger PCD in other plant species and cell death was confirmed in cucumber using morphological (cellular condensation) and molecular (DNA ‘laddering’) markers of PCD. We present evidence that, unlike Dictyostelium and invertebrate PCDs, cytochrome c release is an early event in plant PCD. The mitochondrial release of cytochrome c following a PCD‐inducing stimulus in both plants and mammals suggests the pathways have been conserved during evolution, having been derived from ancestral unicellular death programmes.


Cell | 1989

Evolution of plant mitochondrial genomes via substoichiometric intermediates

Ian Small; Ruth A. Suffolk; Christopher J. Leaver

Comparison of the modern fertile maize mitochondrial genome (N) with an ancestral maize mitochondrial genome (RU) reveals a 12 kb duplication (containing the atpA gene) in the modern genome that is absent from the ancestor. Cloning, mapping, and sequencing of the relevant portions of the ancestral genome shows that this duplication probably arose via a three-stage recombination process involving substoichiometric intermediates. Comparison with analogous observations on yeast mitochondrial genomes suggests that this three-stage model of genome reorganization can be generally applied to plant mitochondrial genomes to explain both deletions and the creation of novel repeats, common features of plant mitochondrial genome evolution.


The EMBO Journal | 1987

Stoichiometric differences in DNA molecules containing the atpA gene suggest mechanisms for the generation of mitochondrial genome diversity in maize.

Ian Small; Peter G. Isaac; Christopher J. Leaver

Four genomic arrangements of the maize mitochondrial atpA gene (encoding the α subunit of the F1 ATPase), have been characterized. Most N (fertile) and S (male‐sterile) cytoplasms contain two atpA arrangements of equal abundance. Prolonged exposure of blots of maize mitochondrial DNA probed with atpA‐specific sequences show that cytoplasms previously reported to lack one of the atpA arrangements do contain the second arrangement but at low levels. Similarly, restriction fragments containing the atpA gene previously thought unique to male‐sterile S and T cytoplasms are present in low abundance in fertile cytoplasms. These observations suggest that fertile and male‐sterile cytoplasms of maize may be more closely related than previously thought, and suggest possible mechanisms to explain the observed mitochondrial genome diversity.


The Plant Cell | 2005

The Critical Role of Arabidopsis Electron-Transfer Flavoprotein:Ubiquinone Oxidoreductase during Dark-Induced Starvation

Kimitsune Ishizaki; Tony R. Larson; Nicolas Schauer; Alisdair R. Fernie; Ian A. Graham; Christopher J. Leaver

In mammals, electron-transfer flavoprotein:ubiquinone oxidoreductase (ETFQO) and electron-transfer flavoprotein (ETF) are functionally associated, and ETF accepts electrons from at least nine mitochondrial matrix flavoprotein dehydrogenases and transfers them to ubiquinone in the inner mitochondrial membrane. In addition, the mammalian ETF/ETFQO system plays a key role in β-oxidation of fatty acids and catabolism of amino acids and choline. By contrast, nothing is known of the function of ETF and ETFQO in plants. Sequence analysis of the unique Arabidopsis thaliana homologue of ETFQO revealed high similarity to the mammalian ETFQO protein. Moreover, green fluorescent protein cellular localization experiments suggested a mitochondrial location for this protein. RNA gel blot analysis revealed that Arabidopsis ETFQO transcripts accumulated in long-term dark-treated leaves. Analysis of three independent insertional mutants of Arabidopsis ETFQO revealed a dramatic reduction in their ability to withstand extended darkness, resulting in senescence and death within 10 d after transfer, whereas wild-type plants remained viable for at least 15 d. Metabolite profiling of dark-treated leaves of the wild type and mutants revealed a dramatic decline in sugar levels. In contrast with the wild type, the mutants demonstrated a significant accumulation of several amino acids, an intermediate of Leu catabolism, and, strikingly, high-level accumulation of phytanoyl-CoA. These data demonstrate the involvement of a mitochondrial protein, ETFQO, in the catabolism of Leu and potentially of other amino acids in higher plants and also imply a novel role for this protein in the chlorophyll degradation pathway activated during dark-induced senescence and sugar starvation.


Trends in Plant Science | 2011

Protein degradation – an alternative respiratory substrate for stressed plants

Wagner L. Araújo; Takayuki Tohge; Kimitsune Ishizaki; Christopher J. Leaver; Alisdair R. Fernie

In cellular circumstances under which carbohydrates are scarce, plants can metabolize proteins and lipids as alternative respiratory substrates. Respiration of protein is less efficient than that of carbohydrate as assessed by the respiratory quotient; however, under certain adverse conditions, it represents an important alternative energy source for the cell. Significant effort has been invested in understanding the regulation of protein degradation in plants. This has included an investigation of how proteins are targeted to the proteosome, and the processes of senescence and autophagy. Here we review these events with particular reference to amino acid catabolism and its role in supporting the tricarboxylic acid cycle and direct electron supply to the ubiquinone pool of the mitochondrial electron transport chain in plants.

Collaboration


Dive into the Christopher J. Leaver's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wayne M. Becker

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge