Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jared L. Cumpston is active.

Publication


Featured researches published by Jared L. Cumpston.


Particle and Fibre Toxicology | 2008

Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction.

Timothy R. Nurkiewicz; Dale W. Porter; Ann F. Hubbs; Jared L. Cumpston; Bean T. Chen; David G. Frazer; Vincent Castranova

BackgroundWe have shown that pulmonary exposure to fine particulate matter (PM) impairs endothelium dependent dilation in systemic arterioles. Ultrafine PM has been suggested to be inherently more toxic by virtue of its increased surface area. The purpose of this study was to determine if ultrafine PM (or nanoparticle) inhalation produces greater microvascular dysfunction than fine PM. Rats were exposed to fine or ultrafine TiO2 aerosols (primary particle diameters of ~1 μm and ~21 nm, respectively) at concentrations which do not alter bronchoalveolar lavage markers of pulmonary inflammation or lung damage.ResultsBy histopathologic evaluation, no significant inflammatory changes were seen in the lung. However, particle-containing macrophages were frequently seen in intimate contact with the alveolar wall. The spinotrapezius muscle was prepared for in vivo microscopy 24 hours after inhalation exposures. Intraluminal infusion of the Ca2+ ionophore A23187 was used to evaluate endothelium-dependent arteriolar dilation. In control rats, A23187 infusion produced dose-dependent arteriolar dilations. In rats exposed to fine TiO2, A23187 infusion elicited vasodilations that were blunted in proportion to pulmonary particle deposition. In rats exposed to ultrafine TiO2, A23187 infusion produced arteriolar constrictions or significantly impaired vasodilator responses as compared to the responses observed in control rats or those exposed to a similar pulmonary load of fine particles.ConclusionThese observations suggest that at equivalent pulmonary loads, as compared to fine TiO2, ultrafine TiO2 inhalation produces greater remote microvascular dysfunction.


Journal of Toxicology and Environmental Health | 2009

Nanoparticle Inhalation Impairs Endothelium-Dependent Vasodilation in Subepicardial Arterioles

Amanda J. LeBlanc; Jared L. Cumpston; Bean T. Chen; D. G. Frazer; Vincent Castranova; Timothy R. Nurkiewicz

Exposure to fine particulate matter (PM, mean aerodynamic diameter ≤2.5 μm) has been shown to be a risk factor for cardiovascular disease mortality and may contribute to acute coronary events such as myocardial infarction (MI). There is sufficient reason to believe that smaller particles, such as nanoparticles, might be even more detrimental than larger sized particles due to their increased surface area and higher pulmonary deposition. Our laboratory showed that nanoparticle inhalation impairs endothelium-dependent arteriolar vasodilation in skeletal muscle. However, it is not known whether coronary microvascular endothelial function is affected in a similar manner. Rats were exposed to filtered air (control) or TiO2 nanoparticles (primary particle diameter, ∼21 nm) via inhalation at concentrations that produced measured depositions (10 μg) relevant to ambient air pollution. Subepicardial arterioles (∼150 μm in diameter) were isolated and responses to transmural pressure, flow-induced dilation (FID), acetylcholine (ACh), the Ca2+ ionophore A23187, and sodium nitroprusside (SNP) were assessed. Myogenic responsiveness was preserved between groups. In addition, there was no difference in the vasodilation to SNP, signifying that smooth muscle sensitivity to nitric oxide (NO) is unaffected by nano-TiO2 exposure. However, inhalation of nano-TiO2 produced an increase in spontaneous tone in coronary arterioles and also impaired endothelium-dependent FID. In addition, ACh-induced and A23187-induced vasodilation was also blunted in arterioles after inhalation of nano-TiO2. Data showed that nanoparticle exposure significantly impairs endothelium-dependent vasodilation in subepicardial arterioles. Such disturbances in coronary microvascular function are consistent with the cardiac events associated with particle pollution exposure.


Inhalation Toxicology | 2012

Multi-walled carbon nanotubes: sampling criteria and aerosol characterization

Bean T. Chen; Diane Schwegler-Berry; Walter McKinney; Samuel Stone; Jared L. Cumpston; Sherri Friend; Dale W. Porter; Vincent Castranova; David G. Frazer

This study intends to develop protocols for sampling and characterizing multi-walled carbon nanotube (MWCNT) aerosols in workplaces or during inhalation studies. Manufactured dry powder containing MWCNT’s, combined with soot and metal catalysts, form complex morphologies and diverse shapes. The aerosols, examined in this study, were produced using an acoustical generator. Representative samples were collected from an exposure chamber using filters and a cascade impactor for microscopic and gravimetric analyses. Results from filters showed that a density of 0.008–0.10 particles per µm2 filter surface provided adequate samples for particle counting and sizing. Microscopic counting indicated that MWCNT’s, resuspended at a concentration of 10 mg/m3, contained 2.7 × 104 particles/cm3. Each particle structure contained an average of 18 nanotubes, resulting in a total of 4.9 × 105 nanotubes/cm3. In addition, fibrous particles within the aerosol had a count median length of 3.04 µm and a width of 100.3 nm, while the isometric particles had a count median diameter of 0.90 µm. A combination of impactor and microscopic measurements established that the mass median aerodynamic diameter of the mixture was 1.5 µm. It was also determined that the mean effective density of well-defined isometric particles was between 0.71 and 0.88 g/cm3, and the mean shape factor of individual nanotubes was between 1.94 and 2.71. The information obtained from this study can be used for designing animal inhalation exposure studies and adopted as guidance for sampling and characterizing MWCNT aerosols in workplaces. The measurement scheme should be relevant for any carbon nanotube aerosol.


Nanotoxicology | 2012

Pulmonary exposure of rats to ultrafine titanium dioxide enhances cardiac protein phosphorylation and substance P synthesis in nodose ganglia

Hong Kan; Zhongxin Wu; Shih Houng Young; Teh Hsun Chen; Jared L. Cumpston; Fei Chen; Michael L. Kashon; Vincent Castranova

Abstract The inhalation of engineered nanoparticles stimulates the development of atherosclerosis and impairs vascular function. However, the cardiac effects of inhaled engineered nanoparticles are unknown. Here, we investigate the effects of ultrafine titanium dioxide (UFTiO2) on the heart, and we define the possible mechanisms underlying the measured effects. Pulmonary exposure of rats to UFTiO2 increased the phosphorylation levels of p38 mitogen-activated protein kinase and cardiac troponin I, but not Akt, in the heart and substance P synthesis in nodose ganglia. Circulatory levels of pro-inflammatory cytokines, and blood cell counts and differentials were not significantly changed after pulmonary exposure. Separately, the incubation of cardiac myocytes isolated from naïve adult rat hearts in vitro with UFTiO2 did not alter the phosphorylation status of the same cardiac proteins. In conclusion, the inhalation of UFTiO2 enhanced the phosphorylation levels of cardiac proteins. Such responses are likely independent of systemic inflammation, but may involve a lung-neuron-regulated pathway.


Toxicology | 2015

Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes

Krishnan Sriram; Gary X. Lin; Amy M. Jefferson; Samuel Stone; Aliakbar Afshari; Michael Keane; Walter McKinney; Mark Jackson; Bean T. Chen; Diane Schwegler-Berry; Amy Cumpston; Jared L. Cumpston; Jenny R. Roberts; David G. Frazer; James M. Antonini

Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinsons disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m(3); 3h/day × 5 d/week × 2 weeks) to fumes generated by gas-metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks.


Nanotoxicology | 2014

The role of nodose ganglia in the regulation of cardiovascular function following pulmonary exposure to ultrafine titanium dioxide

Hong Kan; Zhongxin Wu; Yen-Chang Lin; Teh-hsun Chen; Jared L. Cumpston; Michael L. Kashon; Steve Leonard; Albert E. Munson; Vincent Castranova

Abstract The inhalation of nanosized air pollutant particles is a recognised risk factor for cardiovascular disease; however, the link between occupational exposure to engineered nanoparticles and adverse cardiovascular events remains unclear. In the present study, the authors demonstrated that pulmonary exposure of rats to ultrafine titanium dioxide (UFTiO2) significantly increased heart rate and depressed diastolic function of the heart in response to isoproterenol. Moreover, pulmonary inhalation of UFTiO2 elevated mean and diastolic blood pressure in response to norepinephrine. Pretreatment of the rats ip with the transient receptor potential (TRP) channel blocker ruthenium red inhibited substance P synthesis in nodose ganglia and associated functional and biological changes in the cardiovascular system. In conclusion, the effects of pulmonary inhalation of UFTiO2 on cardiovascular function are most likely triggered by a lung-nodose ganglia-regulated pathway via the activation of TRP channels in the lung.


Inhalation Toxicology | 2014

Neurotoxicity following acute inhalation of aerosols generated during resistance spot weld-bonding of carbon steel

Krishnan Sriram; Amy M. Jefferson; Gary X. Lin; Aliakbar Afshari; Patti C. Zeidler-Erdely; Terence Meighan; Walter McKinney; Mark Jackson; Amy Cumpston; Jared L. Cumpston; Howard Leonard; David G. Frazer; James M. Antonini

Abstract Welding generates complex metal aerosols, inhalation of which is linked to adverse health effects among welders. An important health concern of welding fume (WF) exposure is neurological dysfunction akin to Parkinsons disease (PD). Some applications in manufacturing industry employ a variant welding technology known as “weld-bonding” that utilizes resistance spot welding, in combination with adhesives, for metal-to-metal welding. The presence of adhesives raises additional concerns about worker exposure to potentially toxic components like Methyl Methacrylate, Bisphenol A and volatile organic compounds (VOCs). Here, we investigated the potential neurotoxicological effects of exposure to welding aerosols generated during weld-bonding. Male Sprague–Dawley rats were exposed (25 mg/m3 targeted concentration; 4 h/day × 13 days) by whole-body inhalation to filtered air or aerosols generated by either weld-bonding with sparking (high metal, low VOCs; HM) or without sparking (low metal; high VOCs; LM). Fumes generated under these conditions exhibited complex aerosols that contained both metal oxide particulates and VOCs. LM aerosols contained a greater fraction of VOCs than HM, which comprised largely metal particulates of ultrafine morphology. Short-term exposure to LM aerosols caused distinct changes in the levels of the neurotransmitters, dopamine (DA) and serotonin (5-HT), in various brain areas examined. LM aerosols also specifically decreased the mRNA expression of the olfactory marker protein (Omp) and tyrosine hydroxylase (Th) in the olfactory bulb. Consistent with the decrease in Th, LM also reduced the expression of dopamine transporter (Slc6a3; Dat), as well as, dopamine D2 receptor (Drd2) in the olfactory bulb. In contrast, HM aerosols induced the expression of Th and dopamine D5 receptor (Drd5) mRNAs, elicited neuroinflammation and blood–brain barrier-related changes in the olfactory bulb, but did not alter the expression of Omp. Our findings divulge the differential effects of LM and HM aerosols in the brain and suggest that exposure to weld-bonding aerosols can potentially elicit neurotoxicity following a short-term exposure. However, further investigations are warranted to determine if the aerosols generated by weld-bonding can contribute to persistent long-term neurological deficits and/or neurodegeneration.


Inhalation Toxicology | 2012

Transcriptomics analysis of lungs and peripheral blood of crystalline silica-exposed rats.

Rajendran Sellamuthu; Christina Umbright; Jenny R. Roberts; Rebecca Chapman; Shih-Houng Young; Diana L. Richardson; Jared L. Cumpston; Walter McKinney; Bean T. Chen; David G. Frazer; Shengqiao Li; Michael L. Kashon; Pius Joseph

Minimally invasive approaches to detect/predict target organ toxicity have significant practical applications in occupational toxicology. The potential application of peripheral blood transcriptomics as a practical approach to study the mechanisms of silica-induced pulmonary toxicity was investigated. Rats were exposed by inhalation to crystalline silica (15 mg/m3, 6 h/day, 5 days) and pulmonary toxicity and global gene expression profiles of lungs and peripheral blood were determined at 32 weeks following termination of exposure. A significant elevation in bronchoalveolar lavage fluid lactate dehydrogenase activity and moderate histological changes in the lungs, including type II pneumocyte hyperplasia and fibrosis, indicated pulmonary toxicity in the rats. Similarly, significant infiltration of neutrophils and elevated monocyte chemotactic protein-1 levels in the lungs showed pulmonary inflammation in the rats. Microarray analysis of global gene expression profiles identified significant differential expression [>1.5-fold change and false discovery rate (FDR) p < 0.01] of 520 and 537 genes, respectively, in the lungs and blood of the exposed rats. Bioinformatics analysis of the differentially expressed genes demonstrated significant similarity in the biological processes, molecular networks, and canonical pathways enriched by silica exposure in the lungs and blood of the rats. Several genes involved in functions relevant to silica-induced pulmonary toxicity such as inflammation, respiratory diseases, cancer, cellular movement, fibrosis, etc, were found significantly differentially expressed in the lungs and blood of the silica-exposed rats. The results of this study suggested the potential application of peripheral blood gene expression profiling as a toxicologically relevant and minimally invasive surrogate approach to study the mechanisms underlying silica-induced pulmonary toxicity.


Journal of Toxicology and Environmental Health | 2011

A Computer-Controlled Whole-Body Inhalation Exposure System for the Oil Dispersant COREXIT EC9500A

William T. Goldsmith; Walter McKinney; Mark Jackson; Brandon F. Law; Toni A. Bledsoe; Paul D. Siegel; Jared L. Cumpston; David G. Frazer

An automated whole-body inhalation exposure system capable of exposing 12 individually housed rats was designed to examine the potential adverse health effects of the oil dispersant COREXIT EC9500A, used extensively during the Deepwater Horizon oil spill. A computer-controlled syringe pump injected the COREXIT EC9500A into an atomizer where droplets and vapor were formed and mixed with diluent air. The aerosolized COREXIT EC9500A was passed into a customized exposure chamber where a calibrated light-scattering instrument estimated the real-time particle mass concentration of the aerosol in the chamber. Software feedback loops controlled the chamber aerosol concentration and pressure throughout each exposure. The particle size distribution of the dispersant aerosol was measured and shown to have a count median aerodynamic diameter of 285 nm with a geometric standard deviation of 1.7. The total chamber concentration (particulate + vapor) was determined using a modification of the acidified methylene blue spectrophotometric assay for anionic surfactants. Tests were conducted to show the effectiveness of closed loop control of chamber concentration and to verify chamber concentration homogeneity. Five automated 5-h animal exposures were performed that produced controlled and consistent COREXIT EC9500A concentrations (27.1 ± 2.9 mg/m3, mean ± SD).


Inhalation Toxicology | 2014

Development and characterization of a resistance spot welding aerosol generator and inhalation exposure system

Aliakbar Afshari; Patti C. Zeidler-Erdely; Walter McKinney; Bean T. Chen; Mark Jackson; Diane Schwegler-Berry; Sherri Friend; Amy Cumpston; Jared L. Cumpston; H. Donny Leonard; Terence Meighan; David G. Frazer; James M. Antonini

Abstract Limited information exists regarding the health risks associated with inhaling aerosols that are generated during resistance spot welding of metals treated with adhesives. Toxicology studies evaluating spot welding aerosols are non-existent. A resistance spot welding aerosol generator and inhalation exposure system was developed. The system was designed by directing strips of sheet metal that were treated with an adhesive to two electrodes of a spot welder. Spot welds were made at a specified distance from each other by a computer-controlled welding gun in a fume collection chamber. Different target aerosol concentrations were maintained within the exposure chamber during a 4-h exposure period. In addition, the exposure system was run in two modes, spark and no spark, which resulted in different chemical profiles and particle size distributions. Complex aerosols were produced that contained both metal particulates and volatile organic compounds (VOCs). Size distribution of the particles was multi-modal. The majority of particles were chain-like agglomerates of ultrafine primary particles. The submicron mode of agglomerated particles accounted for the largest portion of particles in terms of particle number. Metal expulsion during spot welding caused the formation of larger, more spherical particles (spatter). These spatter particles appeared in the micron size mode and accounted for the greatest amount of particles in terms of mass. With this system, it is possible to examine potential mechanisms by which spot welding aerosols can affect health, as well as assess which component of the aerosol may be responsible for adverse health outcomes.

Collaboration


Dive into the Jared L. Cumpston's collaboration.

Top Co-Authors

Avatar

David G. Frazer

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Walter McKinney

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Bean T. Chen

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Amy Cumpston

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

James M. Antonini

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Michael L. Kashon

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Samuel Stone

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Diane Schwegler-Berry

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Jackson

National Institute for Occupational Safety and Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge