Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walter McKinney is active.

Publication


Featured researches published by Walter McKinney.


Nanotoxicology | 2012

Acute pulmonary dose–responses to inhaled multi-walled carbon nanotubes

Dale W. Porter; Ann F. Hubbs; Bean T. Chen; Walter McKinney; Robert R. Mercer; Michael G. Wolfarth; Lori Battelli; Nianqiang Wu; Krishnan Sriram; Stephen S. Leonard; Michael E. Andrew; Patsy Willard; Shuji Tsuruoka; Morinobu Endo; Takayuki Tsukada; Fuminori Munekane; David G. Frazer; Vincent Castranova

Abstract This study investigated the in vivo pulmonary toxicity of inhaled multi-walled carbon nanotubes (MWCNT). Mice-inhaled aerosolized MWCNT (10 mg/m3, 5 h/day) for 2, 4, 8 or 12 days. MWCNT lung burden was linearly related to exposure duration. MWCNT-induced pulmonary inflammation was assessed by determining whole lung lavage (WLL) polymorphonuclear leukocytes (PMN). Lung cytotoxicity was assessed by WLL fluid LDH activities. WLL fluid albumin concentrations were determined as a marker of alveolar air–blood barrier integrity. These parameters significantly increased in MWCNT-exposed mice versus controls and were dose-dependent. Histopathologic alterations identified in the lung included (1) bronciolocentric inflammation, (2) bronchiolar epithelial hyperplasia and hypertrophy, (3) fibrosis, (4) vascular changes and (5) rare pleural penetration. MWCNT translocated to the lymph node where the deep paracortex was expanded after 8 or 12 days. Acute inhalation of MWCNT induced dose-dependent pulmonary inflammation and damage with rapid development of pulmonary fibrosis, and also demonstrated that MWCNT can reach the pleura after inhalation exposure.


Particle and Fibre Toxicology | 2013

Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology

Aaron Erdely; Matthew M. Dahm; Bean T. Chen; Patti C. Zeidler-Erdely; Joseph E. Fernback; M. Eileen Birch; Douglas E. Evans; Michael L. Kashon; James A. Deddens; Tracy Hulderman; Suzan Bilgesu; Lori Battelli; Diane Schwegler-Berry; Howard Leonard; Walter McKinney; David G. Frazer; James M. Antonini; Dale W. Porter; Vincent Castranova; Mary K. Schubauer-Berigan

BackgroundDosimetry for toxicology studies involving carbon nanotubes (CNT) is challenging because of a lack of detailed occupational exposure assessments. Therefore, exposure assessment findings, measuring the mass concentration of elemental carbon from personal breathing zone (PBZ) samples, from 8 U.S.-based multi-walled CNT (MWCNT) manufacturers and users were extrapolated to results of an inhalation study in mice.ResultsUpon analysis, an inhalable elemental carbon mass concentration arithmetic mean of 10.6 μg/m3 (geometric mean 4.21 μg/m3) was found among workers exposed to MWCNT. The concentration equates to a deposited dose of approximately 4.07 μg/d in a human, equivalent to 2 ng/d in the mouse. For MWCNT inhalation, mice were exposed for 19 d with daily depositions of 1970 ng (equivalent to 1000 d of a human exposure; cumulative 76 yr), 197 ng (100 d; 7.6 yr), and 19.7 ng (10 d; 0.76 yr) and harvested at 0, 3, 28, and 84 d post-exposure to assess pulmonary toxicity. The high dose showed cytotoxicity and inflammation that persisted through 84 d after exposure. The middle dose had no polymorphonuclear cell influx with transient cytotoxicity. The low dose was associated with a low grade inflammatory response measured by changes in mRNA expression. Increased inflammatory proteins were present in the lavage fluid at the high and middle dose through 28 d post-exposure. Pathology, including epithelial hyperplasia and peribronchiolar inflammation, was only noted at the high dose.ConclusionThese findings showed a limited pulmonary inflammatory potential of MWCNT at levels corresponding to the average inhalable elemental carbon concentrations observed in U.S.-based CNT facilities and estimates suggest considerable years of exposure are necessary for significant pathology to occur at that level.


Journal of Occupational and Environmental Hygiene | 2006

Design, Construction, and Characterization of a Novel Robotic Welding Fume Generator and Inhalation Exposure System for Laboratory Animals

James M. Antonini; Aliakbar Afshari; Samuel Stone; Bean Chen; Diane Schwegler-Berry; W. Gary Fletcher; W. Travis Goldsmith; Kurt H. Vandestouwe; Walter McKinney; Vincent Castranova; David G. Frazer

Respiratory effects observed in welders have included lung function changes, metal fume fever, bronchitis, and a possible increase in the incidence of lung cancer. Many questions remain unanswered regarding the causality and possible underlying mechanisms associated with the potential toxic effects of welding fume inhalation. The objective of the present study was to construct a completely automated, computer-controlled welding fume generation and inhalation exposure system to simulate real workplace exposures. The system comprised a programmable six-axis robotic welding arm, a water-cooled arc welding torch, and a wire feeder that supplied the wire to the torch at a programmed rate. For the initial studies, gas metal arc welding was performed using a stainless steel electrode. A flexible trunk was attached to the robotic arm of the welder and was used to collect and transport fume from the vicinity of the arc to the animal exposure chamber. Undiluted fume concentrations consistently ranged from 90–150 mg/m3 in the animal chamber during welding. Temperature and humidity remained constant in the chamber during the welding operation. The welding particles were composed of (from highest to lowest concentration) iron, chromium, manganese, and nickel as measured by inductively coupled plasma atomic emission spectroscopy. Size distribution analysis indicated the mass median aerodynamic diameter of the generated particles to be approximately 0.24 μm with a geometric standard deviation (σ g ) of 1.39. As determined by transmission and scanning electron microscopy, the generated aerosols were mostly arranged as chain-like agglomerates of primary particles. Characterization of the laboratory-generated welding aerosol has indicated that particle morphology, size, and chemical composition are comparable to stainless steel welding fume generated in other studies. With the development of this novel system, it will be possible to establish an animal model using controlled welding exposures from automated gas metal arc and flux-cored arc welding processes to investigate how welding fumes affect health.


International Journal of Molecular Sciences | 2012

Impairment of Coronary Arteriolar Endothelium-Dependent Dilation after Multi-Walled Carbon Nanotube Inhalation: A Time-Course Study

Phoebe A. Stapleton; Valerie C. Minarchick; Amy M. Cumpston; Walter McKinney; Bean T. Chen; Tina Sager; David G. Frazer; Robert R. Mercer; James F. Scabilloni; Michael E. Andrew; Vincent Castranova; Timothy R. Nurkiewicz

Engineered nanomaterials have been developed for widespread applications due to many highly unique and desirable characteristics. The purpose of this study was to assess pulmonary inflammation and subepicardial arteriolar reactivity in response to multi-walled carbon nanotube (MWCNT) inhalation and evaluate the time course of vascular alterations. Rats were exposed to MWCNT aerosols producing pulmonary deposition. Pulmonary inflammation via bronchoalveolar lavage and MWCNT translocation from the lungs to systemic organs was evident 24 h post-inhalation. Coronary arterioles were evaluated 24–168 h post-exposure to determine microvascular response to changes in transmural pressure, endothelium-dependent and -independent reactivity. Myogenic responsiveness, vascular smooth muscle reactivity to nitric oxide, and α-adrenergic responses all remained intact. However, a severe impact on endothelium-dependent dilation was observed within 24 h after MWCNT inhalation, a condition which improved, but did not fully return to control after 168 h. In conclusion, results indicate that MWCNT inhalation not only leads to pulmonary inflammation and cytotoxicity at low lung burdens, but also a low level of particle translocation to systemic organs. MWCNT inhalation also leads to impairments of endothelium-dependent dilation in the coronary microcirculation within 24 h, a condition which does not fully dissipate within 168 h. The innovations within the field of nanotechnology, while exciting and novel, can only reach their full potential if toxicity is first properly assessed.


Inhalation Toxicology | 2009

Computer controlled multi-walled carbon nanotube inhalation exposure system

Walter McKinney; Bean Chen; D. G. Frazer

Inhalation exposure systems are necessary tools for determining the dose–response relationship of inhaled toxicants under a variety of exposure conditions. The objective of this project was to develop an automated computer controlled system to expose small laboratory animals to precise concentrations of airborne multi-walled carbon nanotubes (MWCNT). An aerosol generator was developed which was capable of suspending a respirable fraction of multi-walled carbon nanotubes from bulk material. The output of the generator was used to expose small laboratory animals to constant aerosol concentrations up to 12 mg/m3. Particle distribution and morphology of the MWCNT aerosol delivered to the exposure chamber were measured and compared to samples previously taken from air inside a facility that produces MWCNT. The comparison showed the MWCNT generator was producing particles similar in size and shape to those found in a work environment. The inhalation exposure system combined air flow controllers, particle monitors, data acquisition devices, and custom software with automatic feedback control to achieve constant and repeatable exposure chamber temperature, relative humidity, pressure, aerosol concentration, and particle size distribution. The automatic control algorithm was capable of maintaining the mean aerosol concentration to within 0.1 mg/m3 of the selected target value, and it could reach 95% of the target value in less than 10 minutes during the start-up of an inhalation exposure. One of the major advantages of this system was that once the exposure parameters were selected, a minimum amount of operator intervention was required over the exposure period.


Journal of Toxicology and Environmental Health | 2013

Pulmonary and Cardiovascular Responses of Rats to Inhalation of Silver Nanoparticles

Jenny R. Roberts; Walter McKinney; Hong Kan; Kristine Krajnak; David G. Frazer; Treye A. Thomas; Stacey Waugh; Allison Kenyon; Robert I. MacCuspie; Vincent A. Hackley; Vincent Castranova

Exposure to wet aerosols generated during use of spray products containing silver (Ag) has not been evaluated. The goal was to assess the potential for cardiopulmonary toxicity following an acute inhalation of wet silver colloid. Rats were exposed by inhalation to a low concentration (100 μg/m3 ) using an undiluted commercial antimicrobial product (20 mg/L total silver; approximately 33 nm mean aerodynamic diameter [MAD]) or to a higher concentration (1000 μg/m3) using a suspension (200 mg/L total silver; approximately 39 nm MAD) synthesized to possess a similar size distribution of Ag nanoparticles for 5 h. Estimated lung burdens from deposition models were 0, 1.4, or 14 μg Ag/rat after exposure to control aerosol, low, and high doses, respectively. At 1 and 7 d postexposure, the following parameters were monitored: pulmonary inflammation, lung cell toxicity, alveolar air/blood barrier damage, alveolar macrophage activity, blood cell differentials, responsiveness of tail artery to vasoconstrictor or vasodilatory agents, and heart rate and blood pressure in response to isoproterenol or norepinephrine, respectively. Changes in pulmonary or cardiovascular parameters were absent or nonsignificant at 1 or 7 d postexposure with the exceptions of increased blood monocytes 1 d after high-dose Ag exposure and decreased dilation of tail artery after stimulation, as well as elevated heart rate in response to isoproterenol 1 d after low-dose Ag exposure, possibly due to bioavailable ionic Ag in the commercial product. In summary, short-term inhalation of nano-Ag did not produce apparent marked acute toxicity in this animal model.


Inhalation Toxicology | 2012

Multi-walled carbon nanotubes: sampling criteria and aerosol characterization

Bean T. Chen; Diane Schwegler-Berry; Walter McKinney; Samuel Stone; Jared L. Cumpston; Sherri Friend; Dale W. Porter; Vincent Castranova; David G. Frazer

This study intends to develop protocols for sampling and characterizing multi-walled carbon nanotube (MWCNT) aerosols in workplaces or during inhalation studies. Manufactured dry powder containing MWCNT’s, combined with soot and metal catalysts, form complex morphologies and diverse shapes. The aerosols, examined in this study, were produced using an acoustical generator. Representative samples were collected from an exposure chamber using filters and a cascade impactor for microscopic and gravimetric analyses. Results from filters showed that a density of 0.008–0.10 particles per µm2 filter surface provided adequate samples for particle counting and sizing. Microscopic counting indicated that MWCNT’s, resuspended at a concentration of 10 mg/m3, contained 2.7 × 104 particles/cm3. Each particle structure contained an average of 18 nanotubes, resulting in a total of 4.9 × 105 nanotubes/cm3. In addition, fibrous particles within the aerosol had a count median length of 3.04 µm and a width of 100.3 nm, while the isometric particles had a count median diameter of 0.90 µm. A combination of impactor and microscopic measurements established that the mass median aerodynamic diameter of the mixture was 1.5 µm. It was also determined that the mean effective density of well-defined isometric particles was between 0.71 and 0.88 g/cm3, and the mean shape factor of individual nanotubes was between 1.94 and 2.71. The information obtained from this study can be used for designing animal inhalation exposure studies and adopted as guidance for sampling and characterizing MWCNT aerosols in workplaces. The measurement scheme should be relevant for any carbon nanotube aerosol.


Toxicologic Pathology | 2013

Nanotechnology: toxicologic pathology.

Ann F. Hubbs; Linda M. Sargent; Dale W. Porter; Tina Sager; Bean T. Chen; David G. Frazer; Vincent Castranova; Krishnan Sriram; Timothy R. Nurkiewicz; Steven H. Reynolds; Lori Battelli; Diane Schwegler-Berry; Walter McKinney; Kara Fluharty; Robert R. Mercer

Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies.


Inhalation Toxicology | 2012

Pulmonary and cardiovascular responses of rats to inhalation of a commercial antimicrobial spray containing titanium dioxide nanoparticles

Walter McKinney; Mark Jackson; Tina Sager; Jeffrey S. Reynolds; Bean T. Chen; and Ali Afshari; Kristine Krajnak; Stacey Waugh; Claud Johnson; Robert R. Mercer; D. G. Frazer; Treye A. Thomas; Vincent Castranova

Our laboratory has previously demonstrated that application of an antimicrobial spray product containing titanium dioxide (TiO2) generates an aerosol of titanium dioxide in the breathing zone of the applicator. The present report describes the design of an automated spray system and the characterization of the aerosol delivered to a whole body inhalation chamber. This system produced stable airborne levels of TiO2 particles with a median count size diameter of 110 nm. Rats were exposed to 314 mg/m3 min (low dose), 826 mg/m3 min (medium dose), and 3638 mg/m3 min (high dose) of TiO2 under the following conditions: 2.62 mg/m3 for 2 h, 1.72 mg/m3 4 h/day for 2 days, and 3.79 mg/m3 4 h/day for 4 days, respectively. Pulmonary (breathing rate, specific airway resistance, inflammation, and lung damage) and cardiovascular (the responsiveness of the tail artery to constrictor or dilatory agents) endpoints were monitored 24 h post-exposure. No significant pulmonary or cardiovascular changes were noted at low and middle dose levels. However, the high dose caused significant increases in breathing rate, pulmonary inflammation, and lung cell injury. Results suggest that occasional consumer use of this antimicrobial spray product should not be a hazard. However, extended exposure of workers routinely applying this product to surfaces should be avoided. During application, care should be taken to minimize exposure by working under well ventilated conditions and by employing respiratory protection as needed. It would be prudent to avoid exposure to children or those with pre-existing respiratory disease.


Journal of Toxicology and Environmental Health | 2011

Pulmonary Effects after Acute Inhalation of Oil Dispersant (COREXIT EC9500A) in Rats

Jenny R. Roberts; Jeffrey S. Reynolds; Janet A. Thompson; Eric J. Zaccone; Michael J. Shimko; William T. Goldsmith; Mark Jackson; Walter McKinney; David G. Frazer; Allison Kenyon; Michael L. Kashon; Giovanni Piedimonte; Vincent Castranova; Jeffrey S. Fedan

COREXIT EC9500A (COREXIT) was used to disperse crude oil during the 2010 Deepwater Horizon oil spill. While the environmental impact of COREXIT has been examined, the pulmonary effects are unknown. Investigations were undertaken to determine whether inhaled COREXIT elicits airway inflammation, alters pulmonary function or airway reactivity, or exerts pharmacological effects. Male rats were exposed to COREXIT (mean 27 mg/m3, 5 h). Bronchoalveolar lavage was performed on d 1 and 7 postexposure. Lactate dehydrogenase (LDH) and albumin were measured as indices of lung injury; macrophages, neutrophils, lymphocytes, and eosinophils were quantified to evaluate inflammation; and oxidant production by macrophages and neutrophils was measured. There were no significant effects of COREXIT on LDH, albumin, inflammatory cell levels or oxidant production at either time point. In conscious animals, neither breathing frequency nor specific airway resistance were altered at 1 hr, 1 d and 7 d postexposure. Airway resistance responses to methacholine (MCh) aerosol in anesthetized animals were unaffected at 1 and 7 d postexposure, while dynamic compliance responses were decreased after 1 d but not 7 d. In tracheal strips, in the presence or absence of MCh, low concentrations of COREXIT (0.001% v/v) elicited relaxation; contraction occurred at 0.003–0.1% v/v. In isolated, perfused trachea, intraluminally applied COREXIT produced similar effects but at higher concentrations. COREXIT inhibited neurogenic contractile responses of strips to electrical field stimulation. Our findings suggest that COREXIT inhalation did not initiate lung inflammation, but may transiently increase the difficulty of breathing.

Collaboration


Dive into the Walter McKinney's collaboration.

Top Co-Authors

Avatar

David G. Frazer

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bean T. Chen

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Michael L. Kashon

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Dale W. Porter

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Mark Jackson

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Diane Schwegler-Berry

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Lori Battelli

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

William T. Goldsmith

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Jenny R. Roberts

National Institute for Occupational Safety and Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge