Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jared Wallace is active.

Publication


Featured researches published by Jared Wallace.


Blood | 2011

Targeted deletion of the mouse Mitoferrin1 gene: from anemia to protoporphyria

Marie Berengere Troadec; David E. Warner; Jared Wallace; Kirk R. Thomas; Gerald J. Spangrude; John D. Phillips; Oleh Khalimonchuk; Barry H. Paw; Diane M. Ward; Jerry Kaplan

Mitoferrin1 is 1 of 2 homologous mitochondrial iron transporters and is required for mitochondrial iron delivery in developing erythroid cells. We show that total deletion of Mfrn1 in embryos leads to embryonic lethality. Selective deletion of Mfrn1 in adult hematopoietic tissues leads to severe anemia because of a deficit in erythroblast formation. Deletion of Mfrn1 in hepatocytes has no phenotype or biochemical effect under normal conditions. In the presence of increased porphyrin synthesis, however, deletion of Mfrn1 in hepatocytes results in a decreased ability to convert protoporphyrin IX into heme, leading to protoporphyria, cholestasis, and bridging cirrhosis. Our results show that the activity of mitoferrin1 is required to manage an increase in heme synthesis. The data also show that alterations in heme synthesis within hepatocytes can lead to protoporphyria and hepatotoxicity.


Antimicrobial Agents and Chemotherapy | 2011

Zinc Pyrithione Inhibits Yeast Growth through Copper Influx and Inactivation of Iron-Sulfur Proteins

Nancy L. Reeder; Jerry Kaplan; Jun Xu; R. Scott Youngquist; Jared Wallace; Ping Hu; Kenton Duane Juhlin; James Robert Schwartz; Raymond A. Grant; Angela M. Fieno; Suzanne Nemeth; Tim Reichling; Jay P. Tiesman; Tim Mills; Mark Steinke; Shuo L. Wang; Charles Winston Saunders

ABSTRACT Zinc pyrithione (ZPT) is an antimicrobial material with widespread use in antidandruff shampoos and antifouling paints. Despite decades of commercial use, there is little understanding of its antimicrobial mechanism of action. We used a combination of genome-wide approaches (yeast deletion mutants and microarrays) and traditional methods (gene constructs and atomic emission) to characterize the activity of ZPT against a model yeast, Saccharomyces cerevisiae. ZPT acts through an increase in cellular copper levels that leads to loss of activity of iron-sulfur cluster-containing proteins. ZPT was also found to mediate growth inhibition through an increase in copper in the scalp fungus Malassezia globosa. A model is presented in which pyrithione acts as a copper ionophore, enabling copper to enter cells and distribute across intracellular membranes. This is the first report of a metal-ligand complex that inhibits fungal growth by increasing the cellular level of a different metal.


PLOS ONE | 2013

Targeting Human MicroRNA Genes Using Engineered Tal-Effector Nucleases (TALENs)

Ruozhen Hu; Jared Wallace; Timothy J. Dahlem; David Grunwald; Ryan M. O'Connell

MicroRNAs (miRNAs) have quickly emerged as important regulators of mammalian physiology owing to their precise control over the expression of critical protein coding genes. Despite significant progress in our understanding of how miRNAs function in mice, there remains a fundamental need to be able to target and edit miRNA genes in the human genome. Here, we report a novel approach to disrupting human miRNA genes ex vivo using engineered TAL-effector (TALE) proteins to function as nucleases (TALENs) that specifically target and disrupt human miRNA genes. We demonstrate that functional TALEN pairs can be designed to enable disruption of miRNA seed regions, or removal of entire hairpin sequences, and use this approach to successfully target several physiologically relevant human miRNAs including miR-155*, miR-155, miR-146a and miR-125b. This technology will allow for a substantially improved capacity to study the regulation and function of miRNAs in human cells, and could be developed into a strategic means by which miRNAs can be targeted therapeutically during human disease.


PLOS ONE | 2016

Genome-Wide CRISPR-Cas9 Screen Identifies MicroRNAs That Regulate Myeloid Leukemia Cell Growth

Jared Wallace; Ruozhen Hu; Timothy L. Mosbruger; Timothy J. Dahlem; W. Zac Stephens; Dinesh S. Rao; June L. Round; Ryan M. O’Connell

Mammalian microRNA expression is dysregulated in human cancer. However, the functional relevance of many microRNAs in the context of tumor biology remains unclear. Using CRISPR-Cas9 technology, we performed a global loss-of-function screen to simultaneously test the functions of individual microRNAs and protein-coding genes during the growth of a myeloid leukemia cell line. This approach identified evolutionarily conserved human microRNAs that suppress or promote cell growth, revealing that microRNAs are extensively integrated into the molecular networks that control tumor cell physiology. miR-155 was identified as a top microRNA candidate promoting cellular fitness, which we confirmed with two distinct miR-155-targeting CRISPR-Cas9 lentiviral constructs. Further, we performed anti-correlation functional profiling to predict relevant microRNA-tumor suppressor gene or microRNA-oncogene interactions in these cells. This analysis identified miR-150 targeting of p53, a connection that was experimentally validated. Taken together, our study describes a powerful genetic approach by which the function of individual microRNAs can be assessed on a global level, and its use will rapidly advance our understanding of how microRNAs contribute to human disease.


Journal of Clinical Investigation | 2016

Neonatal NET-inhibitory factor and related peptides inhibit neutrophil extracellular trap formation

Christian C. Yost; Hansjörg Schwertz; Mark J. Cody; Jared Wallace; Robert A. Campbell; Adriana Vieira-de-Abreu; Cláudia V. Araújo; Sebastian Schubert; Estelle S. Harris; Jesse W. Rowley; Matthew T. Rondina; James M. Fulcher; Curry L. Koening; Andrew S. Weyrich; Guy A. Zimmerman

Neutrophil granulocytes, also called polymorphonuclear leukocytes (PMNs), extrude molecular lattices of decondensed chromatin studded with histones, granule enzymes, and antimicrobial peptides that are referred to as neutrophil extracellular traps (NETs). NETs capture and contain bacteria, viruses, and other pathogens. Nevertheless, experimental evidence indicates that NETs also cause inflammatory vascular and tissue damage, suggesting that identifying pathways that inhibit NET formation may have therapeutic implications. Here, we determined that neonatal NET-inhibitory factor (nNIF) is an inhibitor of NET formation in umbilical cord blood. In human neonatal and adult neutrophils, nNIF inhibits key terminal events in NET formation, including peptidyl arginine deiminase 4 (PAD4) activity, neutrophil nuclear histone citrullination, and nuclear decondensation. We also identified additional nNIF-related peptides (NRPs) that inhibit NET formation. nNIFs and NRPs blocked NET formation induced by pathogens, microbial toxins, and pharmacologic agonists in vitro and in mouse models of infection and systemic inflammation, and they improved mortality in murine models of systemic inflammation, which are associated with NET-induced collateral tissue injury. The identification of NRPs as neutrophil modulators that selectively interrupt NET generation at critical steps suggests their potential as therapeutic agents. Furthermore, our results indicate that nNIF may be an important regulator of NET formation in fetal and neonatal inflammation.


Blood | 2017

miR-155 promotes FLT3-ITD–induced myeloproliferative disease through inhibition of the interferon response

Jared Wallace; Dominique A. Kagele; Anna M. Eiring; Carissa N. Kim; Ruozhen Hu; Marah C. Runtsch; Margaret Alexander; Thomas B. Huffaker; Soh Hyun Lee; Ami B. Patel; Timothy L. Mosbruger; Dinesh S. Rao; Rodney R. Miles; June L. Round; Michael W. Deininger; Ryan M. O'Connell

FLT3-ITD+ acute myeloid leukemia (AML) accounts for ∼25% of all AML cases and is a subtype that carries a poor prognosis. microRNA-155 (miR-155) is specifically overexpressed in FLT3-ITD+ AML compared with FLT3 wild-type (FLT3-WT) AML and is critical for the growth of FLT3-ITD+ AML cells in vitro. However, miR-155s role in regulating FLT3-ITD-mediated disease in vivo remains unclear. In this study, we used a genetic mouse model to determine whether miR-155 influences the development of FLT3-ITD-induced myeloproliferative disease. Results indicate that miR-155 promotes FLT3-ITD-induced myeloid expansion in the bone marrow, spleen, and peripheral blood. Mechanistically, miR-155 increases proliferation of the hematopoietic stem and progenitor cell compartments by reducing the growth-inhibitory effects of the interferon (IFN) response, and this involves targeting of Cebpb. Consistent with our observations in mice, primary FLT3-ITD+ AML clinical samples have significantly higher miR-155 levels and a lower IFN response compared with FLT3-WT AML samples. Further, inhibition of miR-155 in FLT3-ITD+ AML cell lines using CRISPR/Cas9, or primary FLT3-ITD+ AML samples using locked nucleic acid antisense inhibitors, results in an elevated IFN response and reduces colony formation. Altogether, our data reveal that miR-155 collaborates with FLT3-ITD to promote myeloid cell expansion in vivo and that this involves a multitarget mechanism that includes repression of IFN signaling.


Journal of Immunology | 2017

Rab27-Dependent exosome production inhibits chronic inflammation and enables acute responses to inflammatory stimuli

Margaret Alexander; Andrew G. Ramstead; Kaylyn M. Bauer; Soh-Hyun Lee; Marah C. Runtsch; Jared Wallace; Thomas B. Huffaker; Dane K. Larsen; Tanya Tolmachova; Miguel C. Seabra; June L. Round; Diane M. Ward; Ryan M. O’Connell

Extracellular vesicles, including exosomes, have recently been implicated as novel mediators of immune cell communication in mammals. However, roles for endogenously produced exosomes in regulating immune cell functions in vivo are just beginning to be identified. In this article, we demonstrate that Rab27a and Rab27b double-knockout (Rab27DKO) mice that are deficient in exosome secretion have a chronic, low-grade inflammatory phenotype characterized by elevated inflammatory cytokines and myeloproliferation. Upon further investigation, we found that some of these phenotypes could be complemented by wild-type (WT) hematopoietic cells or administration of exosomes produced by GM-CSF–expanded bone marrow cells. In addition, chronically inflamed Rab27DKO mice had a blunted response to bacterial LPS, resembling endotoxin tolerance. This defect was rescued by bone marrow exosomes from WT, but not miR-155−/−, cells, suggesting that uptake of miR-155–containing exosomes is important for a proper LPS response. Further, we found that SHIP1 and IRAK-M, direct targets of miR-155 that are known negative regulators of the LPS response, were elevated in Rab27DKO mice and decreased after treatment with WT, but not miR-155−/−, exosomes. Together, our study finds that Rab27-dependent exosome production contributes to homeostasis within the hematopoietic system and appropriate responsiveness to inflammatory stimuli.


Journal of Biological Chemistry | 2017

Antitumor immunity is defective in T cell–specific microRNA-155–deficient mice and is rescued by immune checkpoint blockade

Thomas B. Huffaker; Soh-Hyun Lee; William W. Tang; Jared Wallace; Margaret Alexander; Marah C. Runtsch; Dane K. Larsen; Jacob Thompson; Andrew G. Ramstead; Ruozhen Hu; June L. Round; Matthew A. Williams; Ryan M. O'Connell

MicroRNA-155 (miR-155) regulates antitumor immune responses. However, its specific functions within distinct immune cell types have not been delineated in conditional KO mouse models. In this study, we investigated the role of miR-155 specifically within T cells during the immune response to syngeneic tumors. We found that miR-155 expression within T cells is required to limit syngeneic tumor growth and promote IFNγ production by T cells within the tumor microenvironment. Consequently, we found that miR-155 expression by T cells is necessary for proper tumor-associated macrophage expression of IFNγ-inducible genes. We also found that immune checkpoint–blocking (ICB) antibodies against programmed cell death protein 1/programmed death ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte–associated protein 4 (CTLA-4) restored antitumor immunity in miR-155 T cell–conditional KO mice. We noted that these ICB antibodies rescued the levels of IFNγ-expressing T cells, expression of multiple activation and effector genes expressed by tumor-infiltrating CD8+ and CD4+ T cells, and tumor-associated macrophage activation. Moreover, the ICB approach partially restored expression of several derepressed miR-155 targets in tumor-infiltrating, miR-155–deficient CD8+ T cells, suggesting that miR-155 and ICB regulate overlapping pathways to promote antitumor immunity. Taken together, our findings highlight the multifaceted role of miR-155 in T cells, in which it promotes antitumor immunity. These results suggest that the augmentation of miR-155 expression could be used to improve anticancer immunotherapies.


Blood | 2017

MicroRNAs and acute myeloid leukemia: therapeutic implications and emerging concepts

Jared Wallace; Ryan M. O’Connell

Acute myeloid leukemia (AML) is a deadly hematologic malignancy characterized by the uncontrolled growth of immature myeloid cells. Over the past several decades, we have learned a tremendous amount regarding the genetic aberrations that govern disease development in AML. Among these are genes that encode noncoding RNAs, including the microRNA (miRNA) family. miRNAs are evolutionarily conserved small noncoding RNAs that display important physiological effects through their posttranscriptional regulation of messenger RNA targets. Over the past decade, studies have identified miRNAs as playing a role in nearly all aspects of AML disease development, including cellular proliferation, survival, and differentiation. These observations have led to the study of miRNAs as biomarkers of disease, and efforts to therapeutically manipulate miRNAs to improve disease outcome in AML are ongoing. Although much has been learned regarding the importance of miRNAs in AML disease initiation and progression, there are many unanswered questions and emerging facets of miRNA biology that add complexity to their roles in AML. Moving forward, answers to these questions will provide a greater level of understanding of miRNA biology and critical insights into the many translational applications for these small regulatory RNAs in AML.


Journal of Biological Chemistry | 2017

Reductions in the mitochondrial ABC transporter Abcb10 affect the transcriptional profile of heme biosynthesis genes

Alexandra Seguin; Naoko Takahashi-Makise; Yvette Y. Yien; Nicholas C. Huston; Jared C. Whitman; Gabriel Musso; Jared Wallace; Thomas B. Bradley; Hector A. Bergonia; Martin D. Kafina; Mitsuyo Matsumoto; Kazuhiko Igarashi; John D. Phillips; Barry H. Paw; Jerry Kaplan; Diane M. Ward

ATP-binding cassette subfamily B member 10 (Abcb10) is a mitochondrial ATP-binding cassette (ABC) transporter that complexes with mitoferrin1 and ferrochelatase to enhance heme biosynthesis in developing red blood cells. Reductions in Abcb10 levels have been shown to reduce mitoferrin1 protein levels and iron import into mitochondria, resulting in reduced heme biosynthesis. As an ABC transporter, Abcb10 binds and hydrolyzes ATP, but its transported substrate is unknown. Here, we determined that decreases in Abcb10 did not result in protoporphyrin IX accumulation in morphant-treated zebrafish embryos or in differentiated Abcb10-specific shRNA murine Friend erythroleukemia (MEL) cells in which Abcb10 was specifically silenced with shRNA. We also found that the ATPase activity of Abcb10 is necessary for hemoglobinization in MEL cells, suggesting that the substrate transported by Abcb10 is important in mediating increased heme biosynthesis during erythroid development. Inhibition of 5-aminolevulinic acid dehydratase (EC 4.2.1.24) with succinylacetone resulted in both 5-aminolevulinic acid (ALA) accumulation in control and Abcb10-specific shRNA MEL cells, demonstrating that reductions in Abcb10 do not affect ALA export from mitochondria and indicating that Abcb10 does not transport ALA. Abcb10 silencing resulted in an alteration in the heme biosynthesis transcriptional profile due to repression by the transcriptional regulator Bach1, which could be partially rescued by overexpression of Alas2 or Gata1, providing a mechanistic explanation for why Abcb10 shRNA MEL cells exhibit reduced hemoglobinization. In conclusion, our findings rule out that Abcb10 transports ALA and indicate that Abcb10s ATP-hydrolysis activity is critical for hemoglobinization and that the substrate transported by Abcb10 provides a signal that optimizes hemoglobinization.

Collaboration


Dive into the Jared Wallace's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dinesh S. Rao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge