Jarinthorn Teerapornpuntakit
Mahidol University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jarinthorn Teerapornpuntakit.
Bone | 2008
Dutmanee Seriwatanachai; Kanogwun Thongchote; Narattaphol Charoenphandhu; Jantarima Pandaranandaka; Kukiat Tudpor; Jarinthorn Teerapornpuntakit; Tuangporn Suthiphongchai; Nateetip Krishnamra
Hyperprolactinemia leads to high bone turnover as a result of enhanced bone formation and resorption. Although its osteopenic effect has long been explained as hyperprolactinemia-induced hypogonadism, identified prolactin (PRL) receptors in osteoblasts suggested a possible direct action of PRL on bone. In the present study, we found that hyperprolactinemia induced by anterior pituitary transplantation (AP), with or without ovariectomy (Ovx), had no detectable effect on bone mineral density and content measured by dual-energy X-ray absorptiometry (DXA). However, histomorphometric studies revealed increases in the osteoblast and osteoclast surfaces in the AP rats, but a decrease in the osteoblast surface in the AP+Ovx rats. The resorptive activity was predominant since bone volume and trabecular number were decreased, and the trabecular separation was increased in both groups. Estrogen supplement (E2) fully reversed the effect of estrogen depletion in the Ovx but not in the AP+Ovx rats. In contrast to the typical Ovx rats, bone formation and resorption became uncoupled in the AP+Ovx rats. Therefore, hyperprolactinemia was likely to have some estrogen-independent and/or direct actions on bone turnover. Osteoblast-expressed PRL receptor transcripts and proteins shown in the present study confirmed our hypothesis. Furthermore, we demonstrated that the osteoblast-like cells, MG-63, directly exposed to PRL exhibited lower expression of alkaline phosphatase and osteocalcin mRNA, and a decrease in alkaline phosphatase activity. The ratios of receptor activator of nuclear factor kappaB ligand (RANKL) and osteoprotegerin (OPG) proteins were increased, indicating an increase in the osteoclastic bone resorption. The present data thus demonstrated that hyperprolactinemia could act directly on bone to stimulate bone turnover, with more influence on bone resorption than formation. PRL enhanced bone resorption in part by increasing RANKL and decreasing OPG expressions by osteoblasts.
Materials Science and Engineering: C | 2014
Weeraphat Pon-On; Narattaphol Charoenphandhu; Jarinthorn Teerapornpuntakit; Jirawan Thongbunchoo; Nateetip Krishnamra; I-Ming Tang
In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze-thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications.
American Journal of Physiology-endocrinology and Metabolism | 2009
Jarinthorn Teerapornpuntakit; Nitita Dorkkam; Kannikar Wongdee; Nateetip Krishnamra; Narattaphol Charoenphandhu
Endurance impact exercise, e.g., running, is known to enhance the intestinal calcium absorption. However, nonimpact exercise, e.g., swimming, is more appropriate for osteoporotic patients with cardiovascular diseases or disorders of bone and joint, but the effect of swimming on the intestinal calcium transport was unknown. This study, therefore, aimed to investigate the transepithelial calcium transport and the expression of related genes in the intestine of rats trained to swim nonstop 1 h/day, 5 days/wk for 2 wk. We found that endurance swimming stimulated calcium transport in the duodenum, proximal jejunum, and cecum, while decreasing that in the proximal colon. Swimming affected neither the transepithelial potential difference nor resistance. As demonstrated by real-time PCR, the small intestine, especially the duodenum, responded to swimming by upregulating a number of genes related to the transcellular calcium transport, i.e., TRPV5, TRPV6, calbindin-D9k, PMCA1b, and NCX1, and the paracellular calcium transport, i.e., ZO-1, ZO-2, ZO-3, cingulin, occludin, and claudins, as well as nuclear receptor of 1,25(OH)2D3. In contrast, swimming downregulated those genes in the colon. Microarray analysis showed that swimming also altered the expression of duodenal genes related to the transport of several ions and nutrients, e.g., Na+, K+, Cl-, glucose, and amino acids. In conclusion, endurance swimming enhanced intestinal calcium absorption, in part, by upregulating the calcium transporter genes. The present microarray study also provided relevant information for further investigations into the intestinal nutrient and electrolyte transport during nonimpact exercise.
Journal of Physiological Sciences | 2008
Kukiat Tudpor; Jarinthorn Teerapornpuntakit; Walailuk Jantarajit; Nateetip Krishnamra; Narattaphol Charoenphandhu
A calcium-regulating hormone 1alpha,25-dihydroxyvitamin D(3) (1,25-[OH](2)D(3)) has been known to rapidly stimulate the transcellular active calcium transport in the chick duodenum. However, its effects on the solvent drag-induced paracellular calcium transport, which normally contributes approximately 70% of the total active calcium transport, and the underlying mechanism were unknown. The present study aimed to investigate the rapid nongenomic actions of physiological concentrations of 1,25-(OH)(2)D(3), i.e., 1, 10, and 100 nmol/l, on the duodenal calcium absorption in female rats. Quantitative real-time PCR revealed strong expressions of the classical vitamin D receptor (VDR) and the membrane-associated rapid response steroid binding receptors (MARRS) in both small and large intestines. By using the Ussing chamber technique, we found that duodenal epithelia acutely exposed to 10 and 100 nmol/l 1,25-(OH)(2)D(3) rapidly increased the solvent drag-induced calcium transport, but not the transcellular calcium transport, in a dose-response manner. On the other hand, 3-day daily injections of 1,25-(OH)(2)D(3) enhanced the transcellular active duodenal calcium transport. The 1,25-(OH)(2)D(3)-stimulated solvent drag-induced transport was abolished by the phosphatidylinositol 3-kinase (PI3K) inhibitors, 200 nmol/l wortmannin and 75 micromol/l LY294002, as well as PKC (1 micromol/l GF109203X) and MEK inhibitors (10 micromol/l U0126). Although 100 nmol/l 1,25-(OH)(2)D(3) did not alter the transepithelial mannitol flux, indicating no widening of the tight junction, it decreased the transepithelial resistance and increased both sodium and chloride permeability through the paracellular channel. We conclude that 1,25-(OH)(2)D(3) uses the nongenomic signaling pathways involving PI3K, PKC, and MEK to rapidly enhance the solvent drag-induced calcium transport, partly by altering the charge-selective property of the duodenal epithelium at least for the pathways involving PI3K and MEK.
American Journal of Physiology-endocrinology and Metabolism | 2012
Pissared Khuituan; Jarinthorn Teerapornpuntakit; Kannikar Wongdee; Panan Suntornsaratoon; Nipaporn Konthapakdee; Jintana Sangsaksri; Chanakarn Sripong; Nateetip Krishnamra; Narattaphol Charoenphandhu
Despite being widely recognized as the important bone-derived phosphaturic hormone, whether fibroblast growth factor (FGF)-23 modulated intestinal calcium absorption remained elusive. Since FGF-23 could reduce the circulating level of 1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃], FGF-23 probably compromised the 1,25(OH)₂D₃-induced intestinal calcium absorption. FGF-23 may also exert an inhibitory action directly through FGF receptors (FGFR) in the intestinal cells. Herein, we demonstrated by Ussing chamber technique that male mice administered 1 μg/kg 1,25(OH)₂D₃ sc daily for 3 days exhibited increased duodenal calcium absorption, which was abolished by concurrent intravenous injection of recombinant mouse FGF-23. This FGF-23 administration had no effect on the background epithelial electrical properties, i.e., short-circuit current, transepithelial potential difference, and resistance. Immunohistochemical evidence of protein expressions of FGFR isoforms 1-4 in mouse duodenal epithelial cells suggested a possible direct effect of FGF-23 on the intestine. This was supported by the findings that FGF-23 directly added to the serosal compartment of the Ussing chamber and completely abolished the 1,25(OH)₂D₃-induced calcium absorption in the duodenal tissues taken from the 1,25(OH)₂D₃-treated mice. However, direct FGF-23 exposure did not decrease the duodenal calcium absorption without 1,25(OH)₂D₃ preinjection. The observed FGF-23 action was mediated by MAPK/ERK, p38 MAPK, and PKC. Quantitative real-time PCR further showed that FGF-23 diminished the 1,25(OH)₂D₃-induced upregulation of TRPV5, TRPV6, and calbindin-D(9k), but not PMCA(1b) expression in the duodenal epithelial cells. In conclusion, besides being a phosphatonin, FGF-23 was shown to be a novel calcium-regulating hormone that acted directly on the mouse intestine, thereby compromising the 1,25(OH)₂D₃-induced calcium absorption.
Pharmacology, Biochemistry and Behavior | 2011
Jantarima Charoenphandhu; Jarinthorn Teerapornpuntakit; Amporn Nuntapornsak; Nateetip Krishnamra; Narattaphol Charoenphandhu
The anxiolytic effect of fluoxetine (Flx) was often ineffective in postmenopausal and estrogen-deficient patients, but such effect had not been experimentally demonstrated, particularly in the female rat model of estrogen deficiency. Here we determined the anxiety-like behaviors in ovariectomized (Ovx) rats treated for 4weeks with 10μg/kg 17β-estradiol s.c. (Ovx+E2), 10mg/kg Flx p.o. (Ovx+Flx) or a combination of both (Ovx+E2+Flx). Since Flx is known to induce anxiolysis in males, we first evaluated the Flx regimen in male rats. The results showed that anxiety-like behaviors were reduced in Flx-treated male rats. In contrast, Ovx+Flx rats still exhibited the same anxiety-like behaviors as in Ovx rats. Both Ovx+E2 and Ovx+E2+Flx rats, however, showed comparable reductions in anxiety-like behaviors, suggesting that Flx had no anxiolytic-like effect. Furthermore, E2 and E2+Flx similarly upregulated the mRNA expression of serotonin reuptake transporter (SERT) and tryptophan hydroxylase-2 in the dorsal raphé of Ovx rats, while having no effect on SERT expression in the frontal cortex, hippocampus, septum, amygdala and periaqueductal gray. In conclusion, Flx induced anxiolytic-like action in male rats. In Ovx rats, it was E2 and not Flx that exerted the anxiolytic-like action, which was mediated, in part, by altering serotonin metabolism in the dorsal raphé.
Molecular and Cellular Endocrinology | 2008
Narattaphol Charoenphandhu; Kannikar Wongdee; Jarinthorn Teerapornpuntakit; Kanogwun Thongchote; Nateetip Krishnamra
Chronic prolactin (PRL) exposure can affect several functions of duodenal epithelia, especially those associated with fluid and electrolyte transport. However, little is known regarding its molecular mechanism. To identify PRL-regulated genes, microarray analysis was performed on RNA samples from duodenal epithelial cells of anterior pituitary (AP)-grafted hyperprolactinemic rats. Herein, we identified 321 transcripts upregulated and 241 transcripts downregulated after 4 weeks of AP transplantation. Results from real-time PCR analyses of 15 selected genes were consistent with the microarray results. Gene ontology analysis demonstrated pleiotropic effects of PRL on several cellular processes, including cellular metabolic process, cell communication and cell adhesion. Interestingly, 17 upregulated transcripts and 12 downregulated transcripts are involved in the transport of ions and nutrients, e.g., Ca(2+), Na(+), K(+), Cl(-) and glucose, thus agreeing with the established action of PRL on electrolyte homeostasis. The present results provided fundamental information for further investigations on mechanism of PRL actions in the intestine.
Pflügers Archiv: European Journal of Physiology | 2009
Walailuk Jantarajit; Jarinthorn Teerapornpuntakit; La-iad Nakkrasae; Nateetip Krishnamra; Narattaphol Charoenphandhu
Prolactin (PRL) is reported to stimulate calcium absorption in the rat’s small intestine. However, little is known regarding its effects on the cecum, a part of the large intestine with the highest rate of intestinal calcium transport. We demonstrated herein by quantitative real-time polymerase chain reaction and Western blot analysis that the cecum could be a target organ of PRL since cecal epithelial cells strongly expressed PRL receptors. In Ussing chamber experiments, PRL enhanced the transcellular cecal calcium absorption in a biphasic dose–response manner. PRL also increased the paracellular calcium permeability and passive calcium transport in the cecum, which could be explained by the PRL-induced decrease in transepithelial resistance and increase in cation selectivity of the cecal epithelium. PRL actions in the cecum were abolished by inhibitors of phosphoinositide 3-kinase (PI3K), protein kinase C (PKC), and RhoA-associated coiled-coil forming kinase (ROCK), but not inhibitors of gene transcription and protein biosynthesis. In conclusion, PRL directly enhanced the transcellular and paracellular calcium transport in the rat cecum through the nongenomic signaling pathways involving PI3K, PKC, and ROCK.
Materials Science and Engineering: C | 2013
Weeraphat Pon-On; Narattaphol Charoenphandhu; Jarinthorn Teerapornpuntakit; Jirawan Thongbunchoo; Nateetip Krishnamra; I-Ming Tang
A drug delivery vehicle consisting of spherical calcium phosphate-collagen particles covered by flower-like (SFCaPCol) blossoms composed of nanorod building blocks and their cellular response is studied. The spherical structure was achieved by a combination of sonication and freeze-drying. The SFCaPCol blossoms have a high surface area of approximately 280 m(2) g(-1). The blossom-like formation having a high surface area allows a drug loading efficiency of 77.82%. The release profile for one drug, vancomycin (VCM), shows long term sustained release in simulated body fluid (SBF), in a phosphate buffer saline (PBS, pH 7.4) solution and in culture media over 2 weeks with a cumulative release ~53%, 75% and 50%, respectively, over the first 7 days. The biocompatibility of the VCM-loaded SFCaPCol scaffold was determined by in vitro cell adhesion and proliferation tests of rat osteoblast-like UMR-106 cells. MTT tests indicated that UMR-106 cells were viable after exposure to the VCM loaded SFCaPCol, meaning that the scaffold (the flower-like blossoms) did not impair the cells viability. The density of cells on the substrate was seen to increase with increasing cultured time.
Cell Biology International | 2009
Utchariya Anantamongkol; Narattaphol Charoenphandhu; Kannikar Wongdee; Jarinthorn Teerapornpuntakit; Tuangporn Suthiphongchai; Siriwan Prapong; Nateetip Krishnamra
As a complex Ca2+‐rich fluid mixture of water, casein, lactose and several ions, milk secretion requires a number of unknown transporters, which can be identified by a genome‐wide microarray study in mammary tissues of lactating animals. Ca2+ was reported to be secreted across mammary epithelial cells through the transcellular pathway, presumably involving TRPC (canonical transient receptor potential) channels. In the present study, we have used quantitative real‐time PCR to demonstrate that the human mammary cell line MCF‐7, as well as rat mammary tissues from pregnant and lactating rats, expressed TRPC1, TRPC5 and TRPC6. Expression of TRPC1, TRPC5 and TRPC7 were markedly up‐regulated, whereas that of TRPC3 and TRPC4 was down‐regulated in the early lactating period. To further identify other transporter genes affected by lactation, a highly sensitive Illumina microarray featuring Bead Array technology was performed on RNA samples from mammary tissues of lactating rats. We found that, of the 384 transcripts changed during lactation, 31 transcripts were involved in the transport of water and electrolytes, such as Ca2+, Na+, K+, Cl−, I−, Fe2+, sulfate and phosphate. The present study, therefore, provides information for further investigation of the mechanism of lactation‐induced transport adaptation in mammary epithelial cells.