Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Narattaphol Charoenphandhu is active.

Publication


Featured researches published by Narattaphol Charoenphandhu.


Bone | 2008

Prolactin directly enhances bone turnover by raising osteoblast-expressed receptor activator of nuclear factor κB ligand/osteoprotegerin ratio

Dutmanee Seriwatanachai; Kanogwun Thongchote; Narattaphol Charoenphandhu; Jantarima Pandaranandaka; Kukiat Tudpor; Jarinthorn Teerapornpuntakit; Tuangporn Suthiphongchai; Nateetip Krishnamra

Hyperprolactinemia leads to high bone turnover as a result of enhanced bone formation and resorption. Although its osteopenic effect has long been explained as hyperprolactinemia-induced hypogonadism, identified prolactin (PRL) receptors in osteoblasts suggested a possible direct action of PRL on bone. In the present study, we found that hyperprolactinemia induced by anterior pituitary transplantation (AP), with or without ovariectomy (Ovx), had no detectable effect on bone mineral density and content measured by dual-energy X-ray absorptiometry (DXA). However, histomorphometric studies revealed increases in the osteoblast and osteoclast surfaces in the AP rats, but a decrease in the osteoblast surface in the AP+Ovx rats. The resorptive activity was predominant since bone volume and trabecular number were decreased, and the trabecular separation was increased in both groups. Estrogen supplement (E2) fully reversed the effect of estrogen depletion in the Ovx but not in the AP+Ovx rats. In contrast to the typical Ovx rats, bone formation and resorption became uncoupled in the AP+Ovx rats. Therefore, hyperprolactinemia was likely to have some estrogen-independent and/or direct actions on bone turnover. Osteoblast-expressed PRL receptor transcripts and proteins shown in the present study confirmed our hypothesis. Furthermore, we demonstrated that the osteoblast-like cells, MG-63, directly exposed to PRL exhibited lower expression of alkaline phosphatase and osteocalcin mRNA, and a decrease in alkaline phosphatase activity. The ratios of receptor activator of nuclear factor kappaB ligand (RANKL) and osteoprotegerin (OPG) proteins were increased, indicating an increase in the osteoclastic bone resorption. The present data thus demonstrated that hyperprolactinemia could act directly on bone to stimulate bone turnover, with more influence on bone resorption than formation. PRL enhanced bone resorption in part by increasing RANKL and decreasing OPG expressions by osteoblasts.


World Journal of Diabetes | 2011

Osteoporosis in diabetes mellitus: Possible cellular and molecular mechanisms

Kannikar Wongdee; Narattaphol Charoenphandhu

Osteoporosis, a global age-related health problem in both male and female elderly, insidiously deteriorates the microstructure of bone, particularly at trabecular sites, such as vertebrae, ribs and hips, culminating in fragility fractures, pain and disability. Although osteoporosis is normally associated with senescence and estrogen deficiency, diabetes mellitus (DM), especially type 1 DM, also contributes to and/or aggravates bone loss in osteoporotic patients. This topic highlight article focuses on DM-induced osteoporosis and DM/osteoporosis comorbidity, covering alterations in bone metabolism as well as factors regulating bone growth under diabetic conditions including, insulin, insulin-like growth factor-1 and angiogenesis. Cellular and molecular mechanisms of DM-related bone loss are also discussed. This information provides a foundation for the better understanding of diabetic complications and for development of early screening and prevention of osteoporosis in diabetic patients.


Canadian Journal of Physiology and Pharmacology | 2007

Prolactin is an important regulator of intestinal calcium transport.

Narattaphol Charoenphandhu; Nateetip Krishnamra

Prolactin has been shown to stimulate intestinal calcium absorption, increase bone turnover, and reduce renal calcium excretion. The small intestine, which is the sole organ supplying new calcium to the body, intensely expresses mRNAs and proteins of prolactin receptors, especially in the duodenum and jejunum, indicating the intestine as a target tissue of prolactin. A number of investigations show that prolactin is able to stimulate the intestinal calcium transport both in vitro and in vivo, whereas bromocriptine, which inhibits pituitary prolactin secretion, antagonizes its actions. In female rats, acute and long-term exposure to high prolactin levels significantly enhances the (i) transcellular active, (ii) solvent drag-induced, and (iii) passive calcium transport occurring in the small intestine. These effects are seen not only in pregnant and lactating animals, but are also observed in non-pregnant and non-lactating animals. Interestingly, young animals are more responsive to prolactin than adults. Prolactin-enhanced calcium absorption gradually diminishes with age, thus suggesting it has an age-dependent mode of action. Although prolactins effects on calcium absorption are not directly vitamin D-dependent; a certain level of circulating vitamin D may be required for the basal expression of genes related to calcium transport. The aforementioned body of evidence supports the hypothesis that prolactin acts as a regulator of calcium homeostasis by controlling the intestinal calcium absorption. Cellular and molecular signal transductions of prolactin in the enterocytes are largely unknown, however, and still require investigation.


Trends in Endocrinology and Metabolism | 2010

Is prolactin the cardinal calciotropic maternal hormone

Narattaphol Charoenphandhu; Kannikar Wongdee; Nateetip Krishnamra

To produce offspring, mothers require a large amount of calcium for fetal growth and milk production. Increased calcium demand leads to enhanced intestinal calcium absorption and stockpiling of bone calcium in pregnancy prior to demineralization in lactation. These coordinated events must be carefully organized by calciotropic hormone(s), but the classical hormones, namely 1,25-dihydroxyvitamin D(3), parathyroid hormone and calcitonin, do not appear to be responsible. Plasma prolactin (PRL) levels are elevated during pregnancy and, in view of the presence of PRL receptors in gut, bone and mammary glands, as well as recent evidence of the stimulatory effects of PRL on intestinal calcium transport, bone resorption and mammary calcium secretion, we postulate that PRL is the cardinal calciotropic hormone during pregnancy and lactation.


Cell Biology International | 2008

Prolactin decreases the expression ratio of receptor activator of nuclear factor κB ligand/osteoprotegerin in human fetal osteoblast cells

Dutmanee Seriwatanachai; Narattaphol Charoenphandhu; Tuangporn Suthiphongchai; Nateetip Krishnamra

Prolactin (PRL) enhanced bone remodeling leading to net bone loss in adult and net bone gain in young animals. Studies in PRL‐exposed osteoblasts derived from adult humans revealed an increase in the expression ratio of receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG), thus supporting the previous finding of PRL‐induced bone loss in adults. This study thus investigated the effects of PRL on the osteoblast functions and the RANKL/OPG ratio in human fetal osteoblast (hFOB) cells which strongly expressed PRL receptors. After 48 h incubation, PRL increased osteocalcin expression, but had no effect on cell proliferation. However, the alkaline phosphatase activity was decreased in a dose—response manner within 24 h. The effect of PRL on alkaline phosphatase was abolished by LY294002, a phosphoinositide 3‐kinase (PI3K) inhibitor. PRL also decreased the RANKL/OPG ratio by downregulating RANKL and upregulating OPG expression, implicating a reduction in the osteoblast signal for osteoclastic bone resorption. It could be concluded that, unlike the osteoblasts derived from adult humans, PRL‐exposed hFOB cells exhibited indices suggestive of bone gain, which could explain the in vivo findings in young rats. The signal transduction of PRL in osteoblasts involved the PI3K pathway.


Materials Science and Engineering: C | 2014

Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications.

Weeraphat Pon-On; Narattaphol Charoenphandhu; Jarinthorn Teerapornpuntakit; Jirawan Thongbunchoo; Nateetip Krishnamra; I-Ming Tang

In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze-thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications.


Phytomedicine | 2012

Upregulation of osteoblastic differentiation marker mRNA expression in osteoblast-like UMR106 cells by puerarin and phytoestrogens from Pueraria mirifica

Wacharaporn Tiyasatkulkovit; Narattaphol Charoenphandhu; Kannikar Wongdee; Jirawan Thongbunchoo; Nateetip Krishnamra; Suchinda Malaivijitnond

Phytoestrogens have attracted attention for their potential in the prevention of postmenopausal osteoporosis. Recently, phytoestrogen-rich herb Pueraria mirifica has been demonstrated to possess an osteogenic effect on bone in ovariectomized rats, but its underlying cellular mechanism was not known. Here, we investigated the effects of P. mirifica extract and its major isoflavone compound, puerarin, on cell viability, cell proliferation and the expression of differentiation markers in rat osteoblast-like UMR106 cells. After exposure to 17β-estradiol (E2), genistein, P. mirifica extract and puerarin, proliferation but not viability of UMR106 cells was markedly decreased. Quantitative real-time PCR revealed that P. mirifica extract and puerarin significantly increased the mRNA expression of alkaline phosphatase (ALP) and osteoprotegerin, but not Runx2, osterix or osteocalcin. Puerarin also decreased the mRNA expression of receptor activator of nuclear factor-κB ligand, an osteoclastogenic factor, suggesting that it could induce bone gain by enhancing osteoblast differentiation and suppressing osteoclast function. Furthermore, after an exposure to high affinity estrogen receptor (ER) antagonist (ICI182780), the E2-, genistein-, P. mirifica extract- and puerarin-induced upregulation of ALP expressions were completely abolished. It could be concluded that P. mirifica extract and puerarin induced osteoblast differentiation rather than osteoblast proliferation in an ER-dependent manner. The present findings, therefore, corroborated the potential benefit of P. mirifica extract and puerarin in the prevention and treatment of postmenopausal osteoporosis.


American Journal of Physiology-endocrinology and Metabolism | 2010

Bone modeling in bromocriptine-treated pregnant and lactating rats: possible osteoregulatory role of prolactin in lactation

Panan Suntornsaratoon; Kannikar Wongdee; Suchandra Goswami; Nateetip Krishnamra; Narattaphol Charoenphandhu

The lactogenic hormone prolactin (PRL) directly regulates osteoblast functions in vitro and modulates bone remodeling in nulliparous rats, but its osteoregulatory roles in pregnant and lactating rats with physiological hyperprolactinemia remained unclear. Herein, bone changes were investigated in rats treated with bromocriptine (Bromo), an inhibitor of pituitary PRL release, or Bromo+PRL at different reproductive phases, from mid-pregnancy to late lactation. PRL receptors were strongly expressed in osteoblasts lining bone trabeculae, indicating bone as a target of PRL actions. By using dual energy X-ray absorptiometry, we found a significant increase in bone mineral density in the femora and vertebrae of pregnant rats. Such pregnancy-induced bone gain was, however, PRL independent and may have resulted from the increased cortical thickness. Bone trabeculae were modestly changed during pregnancy as evaluated by bone histomorphometry. On the other hand, lactating rats, especially in late lactation, showed massive bone loss in bone trabeculae but not in cortical shells. Further study in Bromo- and Bromo+PRL-treated rats suggested that PRL contributed to decreases in trabecular bone volume and number and increases in trabecular separation and eroded surface, as well as a paradoxical increase in bone formation rate in late lactation. Uncoupling of trabecular bone formation and resorption was evident in lactating rats, with the latter being predominant. In conclusion, pregnancy mainly induced cortical bone gain, whereas lactation led to trabecular bone loss in both long bones and vertebrae. Although PRL was not responsible for the pregnancy-induced bone gain, it was an important regulator of bone modeling during lactation.


Behavioural Brain Research | 2013

Beneficial effects of fluoxetine, reboxetine, venlafaxine, and voluntary running exercise in stressed male rats with anxiety- and depression-like behaviors

Sarawut Lapmanee; Jantarima Charoenphandhu; Narattaphol Charoenphandhu

Rodents exposed to mild but repetitive stress may develop anxiety- and depression-like behaviors. Whether this stress response could be alleviated by pharmacological treatments or exercise interventions, such as wheel running, was unknown. Herein, we determined anxiety- and depression-like behaviors in restraint stressed rats (2h/day, 5 days/week for 4 weeks) subjected to acute diazepam treatment (30min prior to behavioral test), chronic treatment with fluoxetine, reboxetine or venlafaxine (10mg/kg/day for 4 weeks), and/or 4-week voluntary wheel running. In elevated plus-maze (EPM) and forced swimming tests (FST), stressed rats spent less time in the open arms and had less swimming duration than the control rats, respectively, indicating the presence of anxiety- and depression-like behaviors. Stressed rats also developed learned fear as evaluated by elevated T-maze test (ETM). Although wheel running could reduce anxiety-like behaviors in both EPM and ETM, only diazepam was effective in the EPM, while fluoxetine, reboxetine, and venlafaxine were effective in the ETM. Fluoxetine, reboxetine, and wheel running, but not diazepam and venlafaxine, also reduced depression-like behavior in FST. Combined pharmacological treatment and exercise did not further reduce anxiety-like behavior in stressed rats. However, stressed rats treated with wheel running plus reboxetine or venlafaxine showed an increase in climbing duration in FST. In conclusion, regular exercise (voluntary wheel running) and pharmacological treatments, especially fluoxetine and reboxetine, could alleviate anxiety- and depression-like behaviors in stressed male rats.


American Journal of Physiology-endocrinology and Metabolism | 2009

Endurance swimming stimulates transepithelial calcium transport and alters the expression of genes related to calcium absorption in the intestine of rats

Jarinthorn Teerapornpuntakit; Nitita Dorkkam; Kannikar Wongdee; Nateetip Krishnamra; Narattaphol Charoenphandhu

Endurance impact exercise, e.g., running, is known to enhance the intestinal calcium absorption. However, nonimpact exercise, e.g., swimming, is more appropriate for osteoporotic patients with cardiovascular diseases or disorders of bone and joint, but the effect of swimming on the intestinal calcium transport was unknown. This study, therefore, aimed to investigate the transepithelial calcium transport and the expression of related genes in the intestine of rats trained to swim nonstop 1 h/day, 5 days/wk for 2 wk. We found that endurance swimming stimulated calcium transport in the duodenum, proximal jejunum, and cecum, while decreasing that in the proximal colon. Swimming affected neither the transepithelial potential difference nor resistance. As demonstrated by real-time PCR, the small intestine, especially the duodenum, responded to swimming by upregulating a number of genes related to the transcellular calcium transport, i.e., TRPV5, TRPV6, calbindin-D9k, PMCA1b, and NCX1, and the paracellular calcium transport, i.e., ZO-1, ZO-2, ZO-3, cingulin, occludin, and claudins, as well as nuclear receptor of 1,25(OH)2D3. In contrast, swimming downregulated those genes in the colon. Microarray analysis showed that swimming also altered the expression of duodenal genes related to the transport of several ions and nutrients, e.g., Na+, K+, Cl-, glucose, and amino acids. In conclusion, endurance swimming enhanced intestinal calcium absorption, in part, by upregulating the calcium transporter genes. The present microarray study also provided relevant information for further investigations into the intestinal nutrient and electrolyte transport during nonimpact exercise.

Collaboration


Dive into the Narattaphol Charoenphandhu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge