Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jarrod J. Scott is active.

Publication


Featured researches published by Jarrod J. Scott.


Science | 2008

Bacterial Protection of Beetle-Fungus Mutualism

Jarrod J. Scott; Dong-Chan Oh; M. Cetin Yuceer; Kier D. Klepzig; Jon Clardy; Cameron R. Currie

Host-microbe symbioses play a critical role in the evolution of biological diversity and complexity. In a notably intricate system, southern pine beetles use symbiotic fungi to help overcome host-tree defenses and to provide nutrition for their larvae. We show that this beetle-fungal mutualism is chemically mediated by a bacterially produced polyunsaturated peroxide. The molecules selective toxicity toward the beetles fungal antagonist, combined with the prevalence and localization of its bacterial source, indicates an insect-microbe association that is both mutualistic and coevolved. This unexpected finding in a well-studied system indicates that mutualistic associations between insects and antibiotic-producing bacteria are more common than currently recognized and that identifying their small-molecule mediators can provide a powerful search strategy for therapeutically useful antimicrobial compounds.


PLOS Genetics | 2011

The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle

Garret Suen; Clotilde Teiling; Lewyn Li; Carson Holt; Ehab Abouheif; Erich Bornberg-Bauer; Pascal Bouffard; Eric J. Caldera; Elizabeth Cash; Amy Cavanaugh; Olgert Denas; Eran Elhaik; Marie-Julie Favé; Jürgen Gadau; Joshua D. Gibson; Dan Graur; Kirk J. Grubbs; Darren E. Hagen; Timothy T. Harkins; Martin Helmkampf; Hao Hu; Brian R. Johnson; Jay Joong Kim; Sarah E. Marsh; Joseph A. Moeller; Monica Munoz-Torres; Marguerite C. Murphy; Meredith C. Naughton; Surabhi Nigam; Rick P. Overson

Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colonys primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ants lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host–microbe symbioses.


PLOS Genetics | 2010

An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

Garret Suen; Jarrod J. Scott; Frank O. Aylward; Sandra M. Adams; Susannah G. Tringe; Adrián A. Pinto-Tomás; Clifton E. Foster; Markus Pauly; Paul J. Weimer; Kerrie Barry; Lynne Goodwin; Pascal Bouffard; Lewyn Li; Jolene Osterberger; Timothy T. Harkins; Steven C. Slater; Timothy J. Donohue; Cameron R. Currie

Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiomes predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.


Organic Letters | 2009

Mycangimycin, a Polyene Peroxide from a Mutualist Streptomyces sp.

Dong-Chan Oh; Jarrod J. Scott; Cameron R. Currie; Jon Clardy

A mutualist actinomycete of the southern pine beetle, Dendroctonus frontalis, produces a polyene peroxide with pronounced antifungal activity. Its structure, absolute configuration, and biological activity were determined by spectral analysis, chemical modification followed by the modified Mosher method, and growth inhibitory assays, respectively.


The ISME Journal | 2012

Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens.

Frank O. Aylward; Kristin E. Burnum; Jarrod J. Scott; Garret Suen; Susannah G. Tringe; Sandra M. Adams; Kerrie Barry; Carrie D. Nicora; Paul D. Piehowski; Samuel O. Purvine; Gabriel J. Starrett; Lynne Goodwin; Richard D. Smith; Mary S. Lipton; Cameron R. Currie

Herbivores gain access to nutrients stored in plant biomass largely by harnessing the metabolic activities of microbes. Leaf-cutter ants of the genus Atta are a hallmark example; these dominant neotropical herbivores cultivate symbiotic fungus gardens on large quantities of fresh plant forage. As the external digestive system of the ants, fungus gardens facilitate the production and sustenance of millions of workers. Using metagenomic and metaproteomic techniques, we characterize the bacterial diversity and physiological potential of fungus gardens from two species of Atta. Our analysis of over 1.2 Gbp of community metagenomic sequence and three 16S pyrotag libraries reveals that in addition to harboring the dominant fungal crop, these ecosystems contain abundant populations of Enterobacteriaceae, including the genera Enterobacter, Pantoea, Klebsiella, Citrobacter and Escherichia. We show that these bacterial communities possess genes associated with lignocellulose degradation and diverse biosynthetic pathways, suggesting that they play a role in nutrient cycling by converting the nitrogen-poor forage of the ants into B-vitamins, amino acids and other cellular components. Our metaproteomic analysis confirms that bacterial glycosyl hydrolases and proteins with putative biosynthetic functions are produced in both field-collected and laboratory-reared colonies. These results are consistent with the hypothesis that fungus gardens are specialized fungus–bacteria communities that convert plant material into energy for their ant hosts. Together with recent investigations into the microbial symbionts of vertebrates, our work underscores the importance of microbial communities in the ecology and evolution of herbivorous metazoans.


Mbio | 2014

Convergent Bacterial Microbiotas in the Fungal Agricultural Systems of Insects

Frank O. Aylward; Garret Suen; Peter H. W. Biedermann; Aaron S. Adams; Jarrod J. Scott; Stephanie Malfatti; Tijana Glavina del Rio; Susannah G. Tringe; Michael Poulsen; Kenneth F. Raffa; Kier D. Klepzig; Cameron R. Currie

ABSTRACT The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associated with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes. IMPORTANCE The cultivation of fungi for food is a behavior that has evolved independently in ants, beetles, and termites and has enabled many species of these insects to become ecologically important and widely distributed herbivores and forest pests. Although the primary fungal cultivars of these insects have been studied for decades, comparatively little is known of their bacterial microbiota. In this study, we show that diverse fungus-growing insects are associated with a common bacterial community composed of the same dominant members. Furthermore, by demonstrating that many of these bacteria have high whole-genome similarity across distantly related insect hosts that reside thousands of miles apart, we show that these bacteria are an important and underappreciated feature of diverse fungus-growing insects. Because of the similarities in the agricultural lifestyles of these insects, this is an example of convergence between both the life histories of the host insects and their symbiotic microbiota. The cultivation of fungi for food is a behavior that has evolved independently in ants, beetles, and termites and has enabled many species of these insects to become ecologically important and widely distributed herbivores and forest pests. Although the primary fungal cultivars of these insects have been studied for decades, comparatively little is known of their bacterial microbiota. In this study, we show that diverse fungus-growing insects are associated with a common bacterial community composed of the same dominant members. Furthermore, by demonstrating that many of these bacteria have high whole-genome similarity across distantly related insect hosts that reside thousands of miles apart, we show that these bacteria are an important and underappreciated feature of diverse fungus-growing insects. Because of the similarities in the agricultural lifestyles of these insects, this is an example of convergence between both the life histories of the host insects and their symbiotic microbiota.


Applied and Environmental Microbiology | 2013

Leucoagaricus gongylophorus Produces Diverse Enzymes for the Degradation of Recalcitrant Plant Polymers in Leaf-Cutter Ant Fungus Gardens

Frank O. Aylward; Kristin E. Burnum-Johnson; Susannah G. Tringe; Clotilde Teiling; Daniel M. Tremmel; Joseph A. Moeller; Jarrod J. Scott; Kerrie Barry; Paul D. Piehowski; Carrie D. Nicora; Stephanie Malfatti; Matthew E. Monroe; Samuel O. Purvine; Lynne Goodwin; Richard D. Smith; George M. Weinstock; Nicole M. Gerardo; Garret Suen; Mary S. Lipton; Cameron R. Currie

ABSTRACT Plants represent a large reservoir of organic carbon comprised primarily of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous fungus that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and, using genomic and metaproteomic tools, we investigate its role in lignocellulose degradation in the gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in ant gardens and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that likely play an important role in lignocellulose degradation. Our study provides a detailed analysis of plant biomass degradation in leaf-cutter ant fungus gardens and insight into the enzymes underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.


Nature Communications | 2015

Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores

Jon G. Sanders; Annabel C. Beichman; Joe Roman; Jarrod J. Scott; David Emerson; James J. McCarthy; Peter R. Girguis

Mammals host gut microbiomes of immense physiological consequence, but the determinants of diversity in these communities remain poorly understood. Diet appears to be the dominant factor, but host phylogeny also seems to be an important, if unpredictable, correlate. Here we show that baleen whales, which prey on animals (fish and crustaceans), harbor unique gut microbiomes with surprising parallels in functional capacity and higher level taxonomy to those of terrestrial herbivores. These similarities likely reflect a shared role for fermentative metabolisms despite a shift in primary carbon sources from plant-derived to animal-derived polysaccharides, such as chitin. In contrast, protein catabolism and essential amino acid synthesis pathways in baleen whale microbiomes more closely resemble those of terrestrial carnivores. Our results demonstrate that functional attributes of the microbiome can vary independently even given an animal-derived diet, illustrating how diet and evolutionary history combine to shape microbial diversity in the mammalian gut.


PLOS ONE | 2015

Microbial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems.

Jarrod J. Scott; John A. Breier; George W. Luther; David Emerson

Chemolithoautotrophic iron-oxidizing bacteria play an essential role in the global iron cycle. Thus far, the majority of marine iron-oxidizing bacteria have been identified as Zetaproteobacteria, a novel class within the phylum Proteobacteria. Marine iron-oxidizing microbial communities have been found associated with volcanically active seamounts, crustal spreading centers, and coastal waters. However, little is known about the presence and diversity of iron-oxidizing communities at hydrothermal systems along the slow crustal spreading center of the Mid-Atlantic Ridge. From October to November 2012, samples were collected from rust-colored mats at three well-known hydrothermal vent systems on the Mid-Atlantic Ridge (Rainbow, Trans-Atlantic Geotraverse, and Snake Pit) using the ROV Jason II. The goal of these efforts was to determine if iron-oxidizing Zetaproteobacteria were present at sites proximal to black smoker vent fields. Small, diffuse flow venting areas with high iron(II) concentrations and rust-colored microbial mats were observed at all three sites proximal to black smoker chimneys. A novel, syringe-based precision sampler was used to collect discrete microbial iron mat samples at the three sites. The presence of Zetaproteobacteria was confirmed using a combination of 16S rRNA pyrosequencing and single-cell sorting, while light micros-copy revealed a variety of iron-oxyhydroxide structures, indicating that active iron-oxidizing communities exist along the Mid-Atlantic Ridge. Sequencing analysis suggests that these iron mats contain cosmopolitan representatives of Zetaproteobacteria, but also exhibit diversity that may be uncommon at other iron-rich marine sites studied to date. A meta-analysis of publically available data encompassing a variety of aquatic habitats indicates that Zetaproteobacteria are rare if an iron source is not readily available. This work adds to the growing understanding of Zetaproteobacteria ecology and suggests that this organism is likely locally restricted to iron-rich marine environments but may exhibit wide-scale geographic distribution, further underscoring the importance of Zetaproteobacteria in global iron cycling.


Applied and Environmental Microbiology | 2015

Microbial iron oxidation in the Arctic tundra and its implications for biogeochemical cycling.

David Emerson; Jarrod J. Scott; Joshua P. Beneš; William B. Bowden

ABSTRACT The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long −149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides.

Collaboration


Dive into the Jarrod J. Scott's collaboration.

Top Co-Authors

Avatar

Cameron R. Currie

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Garret Suen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Frank O. Aylward

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kerrie Barry

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Lynne Goodwin

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carrie D. Nicora

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge