Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jasenka Zubcevic is active.

Publication


Featured researches published by Jasenka Zubcevic.


Hypertension | 2015

Gut Dysbiosis Is Linked to Hypertension

Tao Yang; Monica M. Santisteban; Vermali Rodriguez; Eric Li; Niousha Ahmari; Jessica Marulanda Carvajal; Mojgan Zadeh; Minghao Gong; Yanfei Qi; Jasenka Zubcevic; Bikash Sahay; Carl J. Pepine; Mohan K. Raizada; Mansour Mohamadzadeh

Emerging evidence suggests that gut microbiota is critical in the maintenance of physiological homeostasis. This study was designed to test the hypothesis that dysbiosis in gut microbiota is associated with hypertension because genetic, environmental, and dietary factors profoundly influence both gut microbiota and blood pressure. Bacterial DNA from fecal samples of 2 rat models of hypertension and a small cohort of patients was used for bacterial genomic analysis. We observed a significant decrease in microbial richness, diversity, and evenness in the spontaneously hypertensive rat, in addition to an increased Firmicutes/Bacteroidetes ratio. These changes were accompanied by decreases in acetate- and butyrate-producing bacteria. In addition, the microbiota of a small cohort of human hypertensive patients was found to follow a similar dysbiotic pattern, as it was less rich and diverse than that of control subjects. Similar changes in gut microbiota were observed in the chronic angiotensin II infusion rat model, most notably decreased microbial richness and an increased Firmicutes/Bacteroidetes ratio. In this model, we evaluated the efficacy of oral minocycline in restoring gut microbiota. In addition to attenuating high blood pressure, minocycline was able to rebalance the dysbiotic hypertension gut microbiota by reducing the Firmicutes/Bacteroidetes ratio. These observations demonstrate that high blood pressure is associated with gut microbiota dysbiosis, both in animal and human hypertension. They suggest that dietary intervention to correct gut microbiota could be an innovative nutritional therapeutic strategy for hypertension.


Circulation Research | 2015

Involvement of Bone Marrow Cells and Neuroinflammation in Hypertension

Monica M. Santisteban; Niousha Ahmari; Jessica Marulanda Carvajal; Michael Zingler; Yanfei Qi; Seungbum Kim; Jessica Joseph; Fernando L. Garcia-Pereira; Richard D. Johnson; Vinayak Shenoy; Mohan K. Raizada; Jasenka Zubcevic

RATIONALE Microglial activation in autonomic brain regions is a hallmark of neuroinflammation in neurogenic hypertension. Despite evidence that an impaired sympathetic nerve activity supplying the bone marrow (BM) increases inflammatory cells and decreases angiogenic cells, little is known about the reciprocal impact of BM-derived inflammatory cells on neuroinflammation in hypertension. OBJECTIVE To test the hypothesis that proinflammatory BM cells from hypertensive animals contribute to neuroinflammation and hypertension via a brain-BM interaction. METHODS AND RESULTS After BM ablation in spontaneously hypertensive rats, and reconstitution with normotensive Wistar Kyoto rat BM, the resultant chimeric spontaneously hypertensive rats displayed significant reduction in mean arterial pressure associated with attenuation of both central and peripheral inflammation. In contrast, an elevated mean arterial pressure along with increased central and peripheral inflammation was observed in chimeric Wistar-Kyoto rats reconstituted with spontaneously hypertensive rat BM. Oral treatment with minocycline, an inhibitor of microglial activation, attenuated hypertension in both the spontaneously hypertensive rats and the chronic angiotensin II-infused rats. This was accompanied by decreased sympathetic drive and inflammation. Furthermore, in chronic angiotensin II-infused rats, minocycline prevented extravasation of BM-derived cells to the hypothalamic paraventricular nucleus, presumably via a mechanism of decreased C-C chemokine ligand 2 levels in the cerebrospinal fluid. CONCLUSIONS The BM contributes to hypertension by increasing peripheral inflammatory cells and their extravasation into the brain. Minocycline is an effective therapy to modify neurogenic components of hypertension. These observations support the hypothesis that BM-derived cells are involved in neuroinflammation, and targeting them may be an innovative strategy for neurogenic resistant hypertension therapy.


Circulation Research | 2017

Hypertension-Linked Pathophysiological Alterations in the Gut

Monica M. Santisteban; Yanfei Qi; Jasenka Zubcevic; Seungbum Kim; Tao Yang; Vinayak Shenoy; Colleen T. Cole-Jeffrey; Gilberto Lobaton; Daniel C. Stewart; Andres Rubiano; Chelsey S. Simmons; Fernando L. Garcia-Pereira; Richard D. Johnson; Carl J. Pepine; Mohan K. Raizada

Rationale: Sympathetic nervous system control of inflammation plays a central role in hypertension. The gut receives significant sympathetic innervation, is densely populated with a diverse microbial ecosystem, and contains immune cells that greatly impact overall inflammatory homeostasis. Despite this uniqueness, little is known about the involvement of the gut in hypertension. Objective: Test the hypothesis that increased sympathetic drive to the gut is associated with increased gut wall permeability, increased inflammatory status, and microbial dysbiosis and that these gut pathological changes are linked to hypertension. Methods and Results: Gut epithelial integrity and wall pathology were examined in spontaneously hypertensive rat and chronic angiotensin II infusion rat models. The increase in blood pressure in spontaneously hypertensive rat was associated with gut pathology that included increased intestinal permeability and decreased tight junction proteins. These changes in gut pathology in hypertension were associated with alterations in microbial communities relevant in blood pressure control. We also observed enhanced gut–neuronal communication in hypertension originating from paraventricular nucleus of the hypothalamus and presenting as increased sympathetic drive to the gut. Finally, angiotensin-converting enzyme inhibition (captopril) normalized blood pressure and was associated with reversal of gut pathology. Conclusions: A dysfunctional sympathetic–gut communication is associated with gut pathology, dysbiosis, and inflammation and plays a key role in hypertension. Thus, targeting of gut microbiota by innovative probiotics, antibiotics, and fecal transplant, in combination with the current pharmacotherapy, may be a novel strategy for hypertension treatment.


Hypertension | 2004

Structure-Based Discovery of a Novel Angiotensin-Converting Enzyme 2 Inhibitor

Matthew J. Huentelman; Jasenka Zubcevic; Jose A. Hernandez Prada; Xiaodong Xiao; Dimiter S. Dimitrov; Mohan K. Raizada; David A. Ostrov

Angiotensin-converting enzyme 2 (ACE2) is considered an important therapeutic target for controlling cardiovascular diseases and severe acute respiratory syndrome (SARS) outbreaks. Recently solved high-resolution crystal structures of the apo-bound and inhibitor-bound forms of ACE2 have provided the basis for a novel molecular docking approach in an attempt to identify ACE2 inhibitors and compounds that block SARS coronavirus spike protein-mediated cell fusion. In this study, ≈140 000 small molecules were screened by in silico molecular docking. In this structure–activity relation study, the molecules with the highest predicted binding scores were identified and assayed for ACE2 enzymatic inhibitory activity and for their ability to inhibit SARS coronavirus spike protein-mediated cell fusion. This approach identified N-(2-aminoethyl)-1 aziridine-ethanamine as a novel ACE2 inhibitor that also is effective in blocking the SARS coronavirus spike protein-mediated cell fusion. Thus, the molecular docking approach resulting in the inhibitory capacity of N-(2-aminoethyl)-1 aziridine-ethanamine provides an attractive small molecule lead compound on which the development of more effective therapeutic agents could be developed to modulate hypertension and for controlling SARS infections.


Hypertension | 2014

Altered Inflammatory Response Is Associated With an Impaired Autonomic Input to the Bone Marrow in the Spontaneously Hypertensive Rat

Jasenka Zubcevic; Joo Yun Jun; Seungbum Kim; Pablo D. Perez; Aqeela Afzal; Zhiying Shan; Wencheng Li; Monica M. Santisteban; Wei Yuan; Marcelo Febo; Jay Mocco; Yumei Feng; Edward W. Scott; David M. Baekey; Mohan K. Raizada

Autonomic nervous system dysfunction, exaggerated inflammation, and impaired vascular repair are all hallmarks of hypertension. Considering that bone marrow (BM) is a major source of the inflammatory cells (ICs) and endothelial progenitor cells (EPCs), we hypothesized that impaired BM–autonomic nervous system interaction contributes to dysfunctional BM activity in hypertension. In the spontaneously hypertensive rat (SHR), we observed a >30% increase in BM and blood ICs (CD4.8+) and a >50% decrease in EPCs (CD90+.CD4.5.8–) when compared with the normotensive Wistar–Kyoto rat. Increased tyrosine hydroxylase (70%) and norepinephrine (160%) and decreased choline acetyl transferase (30%) and acetylcholine esterase (55%) indicated imbalanced autonomic nervous system in SHR BM. In Wistar–Kyoto rat, night time–associated elevation in sympathetic nerve activity (50%) and BM norepinephrine (41%) was associated with increased ICs (50%) and decreased EPCs (350%) although BM sympathetic denervation decreased ICs (25%) and increased EPCs (40%). In contrast, these effects were blunted in SHR, possibly because of chronic downregulation of BM adrenergic receptor &agr;2a (by 50%–80%) and &bgr;2 (30%–45%). Application of norepinephrine resulted in increased BM IC activation/release, which was prevented by preadministration of acetylcholine. Electrophysiological recordings of femoral sympathetic nerve activity showed a more robust femoral sympathetic nerve activity in SHR when compared with Wistar–Kyoto rat, peaking earlier in the respiratory cycle, indicative of increased sympathetic tone. Finally, manganese-enhanced MRI demonstrated that presympathetic neuronal activation in SHR was associated with an accelerated retrograde transport of the green fluorescent protein–labeled pseudorabies virus from the BM. These observations demonstrate that a dysfunctional BM autonomic nervous system is associated with imbalanced EPCs and ICs in hypertension.


Pharmacology & Therapeutics | 2013

Neuroimmune communication in hypertension and obesity: A new therapeutic angle?

Annette D. de Kloet; Eric G. Krause; Peng Shi; Jasenka Zubcevic; Mohan K. Raizada; Colin Sumners

Hypertension is an epidemic health concern and a major risk factor for the development of cardiovascular disease. Although there are available treatment strategies for hypertension, numerous hypertensive patients do not have their clinical symptoms under control and it is imperative that new avenues to treat or prevent high blood pressure in these patients are developed. It is well established that increases in sympathetic nervous system (SNS) outflow and enhanced renin-angiotensin system (RAS) activity are common features of hypertension and various pathological conditions that predispose individuals to hypertension. More recently, hypertension has also become recognized as an immune condition and accumulating evidence suggests that interactions between the RAS, SNS and immune systems play a role in blood pressure regulation. This review summarizes what is known about the interconnections between the RAS, SNS and immune systems in the neural regulation of blood pressure. Based on the reviewed studies, a model for RAS/neuroimmune interactions during hypertension is proposed and the therapeutic potential of targeting RAS/neuroimmune interactions in hypertensive patients is discussed. Special emphasis is placed on the applicability of the proposed model to obesity-related hypertension.


Hypertension | 2013

Nucleus of the solitary tract (pro)renin receptor-mediated antihypertensive effect involves nuclear factor-κB-cytokine signaling in the spontaneously hypertensive rat.

Jasenka Zubcevic; Joo Yun Jun; Gwyneth J. Lamont; Tatiane M. Murça; Peng Shi; Wei Yuan; Fan Lin; Jessica Marulanda Carvajal; Qiuhong Li; Colin Sumners; Mohan K. Raizada; Zhiying Shan

The importance of the (pro)renin receptor (PRR) in the function of the central nervous system is increasingly evident because PRR seems to play a role in neuronal control of cardiovascular function. PRR expression is elevated in the nucleus of the solitary tract (NTS) of spontaneously hypertensive rats (SHR). In this study, we tested the hypothesis that altered activity of PRR in the NTS is linked to hypertension. Eight weeks of chronic knockdown of the NTS PRR, using recombinant adeno-associated virus type 2 (AAV2)-PRR-small hairpain RNA (shRNA)–mediated gene transduction, caused a significant increase in mean arterial pressure (MAP) in the SHR (shRNA, 173±5; Control, 151±6 mm Hg) but not in Wistar Kyoto rats (shRNA, 108±7; Control, 106±6 mm Hg). The MAP elevation in the SHR was associated with decreased inflammatory markers tumor necrosis factor-&agr;, interleukin-6, C-C motif ligand 5, and their transcription factor, nuclear factor-&kgr;B. Consistent with the pressor effects of the PRR knockdown, acute bilateral NTS injection of human renin (2 pmol/side) decreased MAP and heart rate (HR) in SHR (&Dgr;MAP, −38±4 mm Hg; &Dgr;heart rate, −40±10 bpm), with negligible responses in Wistar Kyoto rats (&Dgr;MAP, −4±3 mm Hg; &Dgr;heart rate, −12±7 bpm). These effects in SHR were attenuated (80%) by prorenin handle region peptide but were not affected by angiotensin II type 1 or angiotensin II type 2 receptor blockers. Finally, PRR activation in SHR neuronal cultures by prorenin activated nuclear factor-&kgr;B and increased mRNA levels of interleukin-1&bgr; (250-fold), tumor necrosis factor-&agr; (32-fold), interleukin-6 (35-fold), C-C motif ligand 5 (12-fold), and interleukin-10 (7-fold) in a nuclear factor-&kgr;B–dependent but angiotensin II type 1 receptor–independent manner. Therefore, NTS PRR mediates antihypertensive effects via an angiotensin II–independent mechanism in SHR, which involves stimulation of the nuclear factor-&kgr;B–cytokine signaling pathway.


Circulation Research | 2009

Shift to an Involvement of Phosphatidylinositol 3-Kinase in Angiotensin II Actions on Nucleus Tractus Solitarii Neurons of the Spontaneously Hypertensive Rat

Chengwen Sun; Jasenka Zubcevic; Jaimie W. Polson; Jeffrey T. Potts; Carlos Diez-Freire; Qi Zhang; Julian F. R. Paton; Mohan K. Raizada

Rationale: Central angiotensin (Ang) II inhibits baroreflex and plays an important role in the pathogenesis of hypertension. However, the underlying molecular mechanisms are still not fully understood. Objective: Our objective in the present study was to characterize the signal transduction mechanism of phosphatidylinositol 3-kinase (PI3K) involvement in Ang II–induced stimulation of central neuronal activity in cultured neurons and Ang II–induced inhibition of baroreflex in spontaneously hypertensive rats (SHR) versus WKY rats. Methods and Results: Application of Ang II to neurons produced a 42% greater increase in neuronal firing in cells from the SHR than the WKY rat. Although the Ang II–mediated increase in firing rate was abolished entirely by the protein kinase (PK)C inhibitor GF109230 in the WKY, blockade of both PKC and PI3K activity was necessary in the SHR. This was associated with an increased ability of Ang II to stimulate NADPH oxidase–reactive oxygen species (ROS)–mediated signaling involving phosphorylation of the p47phox subunit of the NADPH oxidase and was dependent on the activation of PI3K in the SHR. Inhibition of PI3K resulted in the reduction of levels of p47phox phosphorylation, NADPH oxidase activity, ROS levels, and ultimately neuronal activity in cells from the SHR but not the WKY rat. In addition, in working heart–brainstem preparations, inhibition of PKC activity in the nucleus of the solitary tract in situ abolished the Ang II–mediated depression of cardiac and sympathetic baroreceptor reflex gain in the WKY. In contrast, PKC inhibition in the nucleus of the solitary tract of SHR only partially reduced the effect of Ang II on the baroreceptor reflex gain. Conclusions: These observations demonstrate that PI3K in the cardiovascular brainstem regions of the SHR may be selectively involved in Ang II–mediated signaling that includes a reduction in baroreceptor reflex function, presumably via a NADPH-ROS mediated pathway.


Hypertension | 2013

Chronic Knockdown of the Nucleus of the Solitary Tract AT1 Receptors Increases Blood Inflammatory-Endothelial Progenitor Cell Ratio and Exacerbates Hypertension in the Spontaneously Hypertensive Rat

Zhiying Shan; Jasenka Zubcevic; Peng Shi; Joo Yun Jun; Ying Dong; Tatiane M. Murça; Gwyneth J. Lamont; Adolfo E. Cuadra; Wei Yuan; Yanfei Qi; Qiuhong Li; Julian F. R. Paton; Michael J. Katovich; Colin Sumners; Mohan K. Raizada

AT1 receptor subtype a (AT1Ra) expression is increased in the nucleus of the solitary tract (NTS) in spontaneously hypertensive rat (SHR) compared with Wistar Kyoto controls. However, the chronic role of AT1Ra in the NTS for cardiovascular control is not well understood. In this study, we investigated the hypothesis that the NTS AT1Ra is involved in the neural regulation of the peripheral inflammatory status and linked with hypertension. Transduction of brain neuronal cultures with recombinant adeno-associated virus type 2 (AAV2)-AT1R-small hairpin RNA (shRNA) resulted in a 72% decrease in AT1Ra mRNA and attenuated angiotensin II–induced increase in extracellular signal–regulated kinase 1/2 phosphorylation and neuronal firing. Specific NTS microinjection of AAV2-AT1R-shRNA vector in the SHR resulted in a ≈30 mm Hg increase in the mean arterial pressure compared with control vector–injected animals (Sc-shRNA: 154±4 mm Hg; AT1R-shRNA: 183±10 mm Hg) and induced a resetting of the baroreflex control of heart rate to higher mean arterial pressure. In addition, AAV2-AT1R-shRNA–treated SHRs exhibited a 74% decrease in circulating endothelial progenitor cells (CD90+, CD4−/CD5−/CD8−) and a 300% increase in the circulating inflammatory cells, including CD4+ +CD8+, CD45+/3+ T lymphocytes, and macrophages (CD68+). As a result, the endothelial progenitor cell/inflammatory cells ratio was decreased by 8- to 15-fold in the AT1R-shRNA–treated SHR. However, identical injection of AAV2-AT1R-shRNA into the NTS of Wistar Kyoto rats had no effect on mean arterial pressure and inflammatory cells. These observations suggest that increased expression of the AT1Ra in SHR NTS may present a counterhypertensive mechanism involving inflammatory/angiogenic cells.AT1 receptor subtype a (AT1R1a) expression is increased in the nucleus of the solitary tract (NTS) in Spontaneously Hypertensive Rat (SHR) compared to Wistar Kyoto (WKY) controls. However, the chronic role of AT1Ra in the NTS for cardiovascular control is not well understood. In this study, we investigated the hypothesis that the NTS AT1Ra is involved in neural regulation of the peripheral inflammatory status, and linked with hypertension. Transduction of brain neuronal cultures with AAV2-AT1R-shRNA resulted in a 72% decrease in AT1Ra mRNA, and attenuated AngII-induced increase in ERK1/2 phosphorylation and neuronal firing. Specific NTS microinjection of AAV2-AT1R-shRNA vector in the SHR resulted in a ~30 mmHg increase in the mean arterial pressure (MAP) compared to control vector injected animals (Sc-shRNA: 154±4; AT1R-shRNA: 183±10 mmHg), and induced a resetting of the baroreflex control of heart rate to higher MAP. In addition, AAV2-AT1R-shRNA-treated SHRs exhibited a 74% decrease in circulating endothelial progenitor cells (EPC, CD90+, CD4−/5−/8−), and a 300% increase in the circulating inflammatory cells (IC) including CD4+/CD8+, CD45+/3+ T lymphocytes, and macrophages (CD68+). As a result, the EPC/IC ratio was decreased by 8~15 fold in the AT1R-shRNA-treated SHR. However, identical injection of AAV2-AT1R-shRNA into the NTS of WKY had no effect on MAP and ICs. These observations suggest that increased expression of the AT1Ra in SHR NTS may present a counter-hypertensive mechanism involving inflammatory/angiogenic cells.


Hypertension | 2009

Chronic Blockade of Phosphatidylinositol 3-Kinase in the Nucleus Tractus Solitarii Is Prohypertensive in the Spontaneously Hypertensive Rat

Jasenka Zubcevic; Hidefumi Waki; Carlos Diez-Freire; Alexandra Gampel; Mohan K. Raizada; Julian F. R. Paton

Phosphatidylinositol 3-kinase (PI3K) within brain stem neurons has been implicated in hypertension in the spontaneously hypertensive rat (SHR). Previously, we demonstrated elevated expression of PI3K subunits in rostral ventrolateral medulla and paraventricular nucleus of SHRs compared with Wistar-Kyoto rats. Here, we considered expression levels of PI3K in the nucleus tractus solitarii, a pivotal region in reflex regulation of arterial pressure, and determined its functional role for arterial pressure homeostasis in SHRs and Wistar-Kyoto rats. We found elevated mRNA levels of p110β and p110Δ catalytic PI3K subunits in the nucleus tractus solitarii of adult (12 to 14 weeks old) SHRs relative to the age-matched Wistar-Kyoto rats (fold differences relative to β-actin: 1.7±0.2 versus 1.01±0.08 for p110β, n=6, P<0.05; 1.62±0.15 versus 1.02±0.1 for p110Δ, n=6, P<0.05). After chronic blockade of PI3K signaling in the nucleus tractus solitarii by lentiviral-mediated expression of a mutant form of p85α, systolic pressure increased from 175±3 mm Hg to 191±6 mm Hg (P<0.01) in SHRs but not in Wistar-Kyoto rats. In addition, heart rate increased (from 331±6 to 342±6 bpm; P<0.05) and spontaneous baroreflex gain decreased (from 0.7±0.07 to 0.5±0.04 ms/mm Hg; P<0.001) in the SHRs. Thus, PI3K signaling in the nucleus tractus solitarii of SHR restrains arterial pressure in this animal model of neurogenic hypertension.

Collaboration


Dive into the Jasenka Zubcevic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tao Yang

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Yanfei Qi

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge