Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jasimuddin Ahamed is active.

Publication


Featured researches published by Jasimuddin Ahamed.


Nature Medicine | 2004

Regulation of angiogenesis by tissue factor cytoplasmic domain signaling

Mattias Belting; Michael I. Dorrell; Staffan Sandgren; Edith Aguilar; Jasimuddin Ahamed; Andrea Dorfleutner; Peter Carmeliet; Barbara M. Mueller; Martin Friedlander; Wolfram Ruf

Hemostasis initiates angiogenesis-dependent wound healing, and thrombosis is frequently associated with advanced cancer. Although activation of coagulation generates potent regulators of angiogenesis, little is known about how this pathway supports angiogenesis in vivo. Here we show that the tissue factor (TF)-VIIa protease complex, independent of triggering coagulation, can promote tumor and developmental angiogenesis through protease-activated receptor-2 (PAR-2) signaling. In this context, the TF cytoplasmic domain negatively regulates PAR-2 signaling. Mice from which the TF cytoplasmic domain has been deleted (TFΔCT mice) show enhanced PAR-2-dependent angiogenesis, in synergy with platelet-derived growth factor BB (PDGF-BB). Ocular tissue from diabetic patients shows PAR-2 colocalization with phosphorylated TF specifically on neovasculature, suggesting that phosphorylation of the TF cytoplasmic domain releases its negative regulatory control of PAR-2 signaling in angiogenesis. Targeting the TF-VIIa signaling pathway may thus enhance the efficacy of angiostatic treatments for cancer and neovascular eye diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Disulfide isomerization switches tissue factor from coagulation to cell signaling

Jasimuddin Ahamed; Henri H. Versteeg; Marjolein Kerver; Vivien M. Chen; Barbara M. Mueller; Philip J. Hogg; Wolfram Ruf

Cell-surface tissue factor (TF) binds the serine protease factor VIIa to activate coagulation or, alternatively, to trigger signaling through the G protein-coupled, protease-activated receptor 2 (PAR2) relevant to inflammation and angiogenesis. Here we demonstrate that TF·VIIa-mediated coagulation and cell signaling involve distinct cellular pools of TF. The surface-accessible, extracellular Cys186–Cys209 disulfide bond of TF is critical for coagulation, and protein disulfide isomerase (PDI) disables coagulation by targeting this disulfide. A TF mutant (TF C209A) with an unpaired Cys186 retains TF·VIIa signaling activity, and it has reduced affinity for VIIa, a characteristic of signaling TF on cells with constitutive TF expression. We further show that PDI suppresses TF coagulant activity in a nitric oxide-dependent pathway, linking the regulation of TF thrombogenicity to oxidative stress in the vasculature. Furthermore, a unique monoclonal antibody recognizes only the noncoagulant, cryptic conformation of TF. This antibody inhibits formation of the TF·PAR2 complex and TF·VIIa signaling, but it does not prevent coagulation activation. These experiments delineate an upstream regulatory mechanism that controls TF function, and they provide initial evidence that TF·VIIa signaling can be specifically inhibited with minimal effects on coagulation.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2005

Signaling of the Tissue Factor Coagulation Pathway in Angiogenesis and Cancer

Mattias Belting; Jasimuddin Ahamed; Wolfram Ruf

Activation of coagulation precedes or coincides with angiogenesis in wound healing and postischemic tissue regeneration. Advanced cancer is associated with a hypercoagulable state, and tissue factor expression by cancer cells has received widespread attention because of its significant contribution to the pathogenesis of cancer progression and metastasis. Our recent work demonstrates that tissue factor–mediated cellular signaling is relevant to cancer angiogenesis. Here we review the molecular mechanisms of tissue factor pathways in angiogenesis and tumorigenesis with emphasis on the intriguing role for tissue factor cytoplasmic domain signaling.


Nature Medicine | 2014

Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells

Meng Zhao; John M. Perry; Heather Marshall; Aparna Venkatraman; Pengxu Qian; Xi C. He; Jasimuddin Ahamed; Linheng Li

Multiple bone marrow stromal cell types have been identified as hematopoietic stem cell (HSC)-regulating niche cells. However, whether HSC progeny can serve directly as HSC niche cells has not previously been shown. Here we report a dichotomous role of megakaryocytes (MKs) in both maintaining HSC quiescence during homeostasis and promoting HSC regeneration after chemotherapeutic stress. We show that MKs are physically associated with HSCs in the bone marrow of mice and that MK ablation led to activation of quiescent HSCs and increased HSC proliferation. RNA sequencing (RNA-seq) analysis revealed that transforming growth factor β1 (encoded by Tgfb1) is expressed at higher levels in MKs as compared to other stromal niche cells. MK ablation led to reduced levels of biologically active TGF-β1 protein in the bone marrow and nuclear-localized phosphorylated SMAD2/3 (pSMAD2/3) in HSCs, suggesting that MKs maintain HSC quiescence through TGF-β–SMAD signaling. Indeed, TGF-β1 injection into mice in which MKs had been ablated restored HSC quiescence, and conditional deletion of Tgfb1 in MKs increased HSC activation and proliferation. These data demonstrate that TGF-β1 is a dominant signal emanating from MKs that maintains HSC quiescence. However, under conditions of chemotherapeutic challenge, MK ablation resulted in a severe defect in HSC expansion. In response to stress, fibroblast growth factor 1 (FGF1) signaling from MKs transiently dominates over TGF-β inhibitory signaling to stimulate HSC expansion. Overall, these observations demonstrate that MKs serve as HSC-derived niche cells to dynamically regulate HSC function.


Blood | 2008

In vitro and in vivo evidence for shear-induced activation of latent transforming growth factor-β1

Jasimuddin Ahamed; Nathalie Burg; Keiji Yoshinaga; Christin A. Janczak; Daniel B. Rifkin; Barry S. Coller

Transforming growth factor-beta1 (TGF-beta1) has potent physiologic and pathologic effects on a variety of cell types at subnanomolar concentrations. Platelets contain 40 times as much TGF-beta1 as other cells and secrete it as an inactive (latent) form in complex with latency-associated peptide (LAP), which is disulfide bonded via Cys33 to latent TGF-beta binding protein 1 (LTBP-1). Little is known about how latent TGF-beta1 becomes activated in vivo. Here we show that TGF-beta1 released from platelets or fibroblasts undergoes dramatic activation when subjected to stirring or shear forces, providing a potential mechanism for physiologic control. Thiol-disulfide exchange appears to contribute to the process based on the effects of thiol-reactive reagents and differences in thiol labeling of TGF-beta1 before and after stirring or shear. Activation required the presence of LTBP, as TGF-beta1 contained in complex with only LAP could not be activated by stirring when studied as either a recombinant purified protein complex or in the platelet releasates or sera of mice engineered to contain an LAP C33S mutation. Release and activation of latent TGF-beta1 in vivo was demonstrated in a mouse model 5 minutes after thrombus formation. These data potentially provide a novel mechanism for in vivo activation of TGF-beta1.


Blood | 2012

Platelet TGF-β1 contributions to plasma TGF-β1, cardiac fibrosis, and systolic dysfunction in a mouse model of pressure overload

Alexander Meyer; Wei Wang; Jiaxiang Qu; Lori B. Croft; Jay L. Degen; Barry S. Coller; Jasimuddin Ahamed

Circulating platelets contain high concentrations of TGF-β1 in their α-granules and release it on platelet adhesion/activation. We hypothesized that uncontrolled in vitro release of platelet TGF-β1 may confound measurement of plasma TGF-β1 in mice and that in vivo release and activation may contribute to cardiac pathology in response to constriction of the transverse aorta, which produces both high shear and cardiac pressure overload. Plasma TGF-β1 levels in blood collected from C57Bl/6 mice by the standard retro-bulbar technique were much higher than those obtained when prostaglandin E₁ was added to inhibit release or when blood was collected percutaneously from the left ventricle under ultrasound guidance. Even with optimal blood drawing, plasma TGF-β1 was lower in mice rendered profoundly thrombocytopenic or mice with selectively low levels of platelet TGF-β1 because of megakaryocyte-specific disruption of their TGF-β1 gene (Tgfb1(flox)). Tgfb1(flox) mice were also partially protected from developing cardiac hypertrophy, fibrosis, and systolic dysfunction in response to transverse aortic constriction. These studies demonstrate that plasma TGF-β1 levels can be assessed accurately, but it requires special precautions; that platelet TGF-β1 contributes to plasma levels of TGF-β1; and that platelet TGF-β1 contributes to the pathologic cardiac changes that occur in response to aortic constriction.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2005

Regulation of Tissue Factor–Mediated Initiation of the Coagulation Cascade by Cell Surface Grp78

Gourab Bhattacharjee; Jasimuddin Ahamed; Brian Pedersen; Amr El-Sheikh; Nigel Mackman; Wolfram Ruf; Cheng Liu; Thomas S. Edgington

Objective—To test the hypothesis that Grp78 negatively regulates cell surface tissue factor (TF) procoagulant activity and whether this is mediated by physical interaction. Methods and Results—Biopanning with phage-displayed peptidyl libraries has identified peptide probes that bind selectively in vivo to the surface of atherosclerotic plaque endothelium. The highest affinity peptide, EKO130, binds 78-kDa glucose regulated protein (Grp78). Grp78 participates in numerous pathological processes, including the regulation of the coagulation cascade, but the mechanism of Grp78 regulation of coagulation is unknown. To characterize this function, we analyzed the effect of Grp78 on TF-mediated procoagulant activity on murine brain endothelial cells (bEND.3) and macrophage-like (RAW) cells, which are relevant in mediation of atherothrombosis. We show that Grp78 is present on the surface of endothelium and monocyte/macrophage-like cells in atherosclerotic lesions. Inhibition of Grp78 resulted in increased procoagulant activity. We demonstrate that Grp78 negatively regulates procoagulant activity by interacting physically with the TF extracellular domain on the cell surface. Conclusions—The evidence indicates that Grp78 negatively regulates TF functional activity via direct binding to and functional inhibition of TF. Identification of the mechanism by which Grp78 regulates TF function may advance insight into the pathobiology of atherosclerosis and associated arterial thrombosis.


Circulation Research | 2008

Factor Xa Binding to Annexin 2 Mediates Signal Transduction via Protease-Activated Receptor 1

Gourab Bhattacharjee; Jasimuddin Ahamed; Rafal Pawlinski; Cheng Liu; Nigel Mackman; Wolfram Ruf; Thomas S. Edgington

The serine protease zymogen factor X is converted to its catalytically active form factor Xa by the binary complex of factor VIIa bound to its cell surface receptor tissue factor (TF) or by the intrinsic Xase complex, which consists of active factors VIII (VIIIa), IX (IXa), factor X, and Ca2+. Factor Xa has procoagulant activity by conversion of prothrombin to thrombin and also induces signal transduction, either alone or in the ternary TF:VIIa:factor Xa coagulation initiation complex. Factor Xa cleaves and activates protease activated receptor (PAR)1 or -2, but factor Xa signaling efficiency varies among cell types. We show here that annexin 2 acts as a receptor for factor Xa on the surface of human umbilical vein endothelial cells and that annexin 2 facilitates factor Xa activation of PAR-1 but does not enhance coagulant function of factor Xa. Overexpression of TF abolishes annexin 2 dependence on factor Xa signaling and diminishes binding to cell surface annexin 2, whereas selectively abolishing TF promotes the annexin 2/factor Xa interaction. We propose that annexin 2 serves to regulate factor Xa signaling specifically in the absence of cell surface TF and may thus play physiological or pathological roles when factor Xa is generated in a TF-depleted environment.


Journal of Immunology | 2007

Inhibition of Transmethylation Down-Regulates CD4 T Cell Activation and Curtails Development of Autoimmunity in a Model System

Brian R. Lawson; Yulia Manenkova; Jasimuddin Ahamed; Xiaoru Chen; Jian Ping Zou; Roberto Baccala; Argyrios N. Theofilopoulos; Chong Yuan

Transmethylation affects several cellular events, including T cell activation, and blockade of this pathway may curtail inflammatory/autoimmune responses. Here, we demonstrate that transmethylation inhibition by a novel reversible S-adenosyl-l-homocysteine hydrolase inhibitor leads to immunosuppression by reducing phosphorylation of several key proteins involved in TCR signaling, including Akt, Erk1/2, and NF-κB. Remarkably, this effect was largely restricted to CD4 T cells and correlated with reduced arginine methylation of Vav1, an essential guanine nucleotide exchange factor in T cell stimulation. Treatment with the transmethylation inhibitor averted, and even ameliorated, the CD4-mediated autoimmune disease, experimental autoimmune encephalomyelitis. The data suggest that transmethylation is required for CD4 T cell activation, and its inhibition may be a novel approach in the treatment of multiple sclerosis, and other CD4-mediated autoimmune diseases.


PLOS ONE | 2009

In Vitro and In Vivo Evidence that Thrombospondin-1 (TSP-1) Contributes to Stirring- and Shear-Dependent Activation of Platelet-Derived TGF-β1

Jasimuddin Ahamed; Christin A. Janczak; Knut M. Wittkowski; Barry S. Coller

Thrombospondin 1 (TSP-1), which is contained in platelet α-granules and released with activation, has been shown to activate latent TGF-β1 in vitro, but its in vivo role is unclear as TSP-1-null (Thbs1−/−) mice have a much less severe phenotype than TGF-β1-null (Tgfb1−/−) mice. We recently demonstrated that stirring and/or shear could activate latent TGF-β1 released from platelets and have now studied these methods of TGF-β1 activation in samples from Thbs1−/− mice, which have higher platelet counts and higher levels of total TGF-β1 in their serum than wild type mice. After either two hours of stirring or shear, Thbs1−/− samples demonstrated less TGF-β1 activation (31% and 54% lower levels of active TGF-β1 in serum and platelet releasates, respectively). TGF-β1 activation in Thbs1−/− mice samples was normalized by adding recombinant human TSP-1 (rhTSP-1). Exposure of platelet releasates to shear for one hour led to near depletion of TSP-1, but this could be prevented by preincubating samples with thiol-reactive agents. Moreover, replenishing rhTSP-1 to human platelet releasates after one hour of stirring enhanced TGF-β1 activation. In vivo TGF-β1 activation in carotid artery thrombi was also partially impaired in Thbs1−/− mice. These data indicate that TSP-1 contributes to shear-dependent TGF-β1 activation, thus providing a potential explanation for the inconsistent in vitro data previously reported as well as for the differences in phenotypes of Thbs1−/− and Tgfb1−/− mice.

Collaboration


Dive into the Jasimuddin Ahamed's collaboration.

Top Co-Authors

Avatar

Wolfram Ruf

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Wang

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar

Cheng Liu

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Marjolein Kerver

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge