Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wolfram Ruf is active.

Publication


Featured researches published by Wolfram Ruf.


Nature Medicine | 2004

Regulation of angiogenesis by tissue factor cytoplasmic domain signaling

Mattias Belting; Michael I. Dorrell; Staffan Sandgren; Edith Aguilar; Jasimuddin Ahamed; Andrea Dorfleutner; Peter Carmeliet; Barbara M. Mueller; Martin Friedlander; Wolfram Ruf

Hemostasis initiates angiogenesis-dependent wound healing, and thrombosis is frequently associated with advanced cancer. Although activation of coagulation generates potent regulators of angiogenesis, little is known about how this pathway supports angiogenesis in vivo. Here we show that the tissue factor (TF)-VIIa protease complex, independent of triggering coagulation, can promote tumor and developmental angiogenesis through protease-activated receptor-2 (PAR-2) signaling. In this context, the TF cytoplasmic domain negatively regulates PAR-2 signaling. Mice from which the TF cytoplasmic domain has been deleted (TFΔCT mice) show enhanced PAR-2-dependent angiogenesis, in synergy with platelet-derived growth factor BB (PDGF-BB). Ocular tissue from diabetic patients shows PAR-2 colocalization with phosphorylated TF specifically on neovasculature, suggesting that phosphorylation of the TF cytoplasmic domain releases its negative regulatory control of PAR-2 signaling in angiogenesis. Targeting the TF-VIIa signaling pathway may thus enhance the efficacy of angiostatic treatments for cancer and neovascular eye diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Disulfide isomerization switches tissue factor from coagulation to cell signaling

Jasimuddin Ahamed; Henri H. Versteeg; Marjolein Kerver; Vivien M. Chen; Barbara M. Mueller; Philip J. Hogg; Wolfram Ruf

Cell-surface tissue factor (TF) binds the serine protease factor VIIa to activate coagulation or, alternatively, to trigger signaling through the G protein-coupled, protease-activated receptor 2 (PAR2) relevant to inflammation and angiogenesis. Here we demonstrate that TF·VIIa-mediated coagulation and cell signaling involve distinct cellular pools of TF. The surface-accessible, extracellular Cys186–Cys209 disulfide bond of TF is critical for coagulation, and protein disulfide isomerase (PDI) disables coagulation by targeting this disulfide. A TF mutant (TF C209A) with an unpaired Cys186 retains TF·VIIa signaling activity, and it has reduced affinity for VIIa, a characteristic of signaling TF on cells with constitutive TF expression. We further show that PDI suppresses TF coagulant activity in a nitric oxide-dependent pathway, linking the regulation of TF thrombogenicity to oxidative stress in the vasculature. Furthermore, a unique monoclonal antibody recognizes only the noncoagulant, cryptic conformation of TF. This antibody inhibits formation of the TF·PAR2 complex and TF·VIIa signaling, but it does not prevent coagulation activation. These experiments delineate an upstream regulatory mechanism that controls TF function, and they provide initial evidence that TF·VIIa signaling can be specifically inhibited with minimal effects on coagulation.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Mechanistic coupling of protease signaling and initiation of coagulation by tissue factor

Matthias Riewald; Wolfram Ruf

The crucial role of cell signaling in hemostasis is clearly established by the action of the downstream coagulation protease thrombin that cleaves platelet-expressed G-protein-coupled protease activated receptors (PARs). Certain PARs are cleaved by the upstream coagulation proteases factor Xa (Xa) and the tissue factor (TF)–factor VIIa (VIIa) complex, but these enzymes are required at high nonphysiological concentrations and show limited recognition specificity for the scissile bond of target PARs. However, defining a physiological mechanism of PAR activation by upstream proteases is highly relevant because of the potent anti-inflammatory in vivo effects of inhibitors of the TF initiation complex. Activation of substrate factor X (X) by the TF–VIIa complex is here shown to produce enhanced cell signaling in comparison to the TF–VIIa complex alone, free Xa, or Xa that is generated in situ by the intrinsic activation complex. Macromolecular assembly of X into a ternary complex of TF–VIIa–X is required for proteolytic conversion to Xa, and product Xa remains transiently associated in a TF–VIIa–Xa complex. By trapping this complex with a unique inhibitor that preserves Xa activity, we directly show that Xa in this ternary complex efficiently activates PAR-1 and -2. These experiments support the concept that proinflammatory upstream coagulation protease signaling is mechanistically coupled and thus an integrated part of the TF–VIIa-initiated coagulation pathway, rather than a late event during excessive activation of coagulation and systemic generation of proteolytic activity.


Journal of Clinical Investigation | 1998

Requirement for binding of catalytically active factor VIIa in tissue factor-dependent experimental metastasis.

Barbara M. Mueller; Wolfram Ruf

Tissue factor (TF), the initiating cell surface receptor of the coagulation cascade, plays important roles in embryogenesis, angiogenesis, and tumor cell metastasis. It is controversial whether proteolytic function of TF complexed with its serine protease ligand VIIa is required for metastatic tumor dissemination. We show here in a model for TF-dependent experimental hematogenous metastasis, that TF supports metastasis by both proteolytic activity of the TF-VIIa complex and currently undefined functions of the cytoplasmic domain. We demonstrate that ligand binding of VIIa to TF is required for metastasis. Antimetastatic properties of covalently inactivated VIIa provide evidence that ligand binding is insufficient per se to support metastasis, emphasizing that proteolytic activity is necessary for the metastatic process. Ala or Asp mutations of cytoplasmic serine residues were introduced to preclude or mimic phosphorylation. In vivo analysis of these mutants suggests that local protease generation on the tumor cell surface does not serve simply to activate the cytoplasmic domain of TF by serine phosphorylation. Thus, extracellular functions of the catalytically active TF-VIIa complex cooperate with specific functions of the TF cytoplasmic domain to support the complex process of hematogenous tumor cell dissemination.


The FASEB Journal | 1994

Structural biology of tissue factor, the initiator of thrombogenesis in vivo.

Wolfram Ruf; Thomas S. Edgington

Thromboembolic disorders are commonly associated with cardiovascular, infectious, and neoplastic disease. A major link in the pathophysiology of thrombosis is the excessive triggering of the coagulation pathways by the initiating cofactor molecule termed tissue factor, an integral membrane glycoprotein. The tissue factor extracellular ligand binding domain is predicted to fold in an architecture similar to the cytokine receptor homology module. Functional sites in tissue factor have been defined by a combination of antibody, chemical cross‐linking, and mutational analyses providing a model for cofactor function that involves discrete interactions with both enzyme and substrate. The understanding of the structural basis of tissue factor function promises to facilitate rational design of inhibitor molecules for defined functional sites, eventually leading to effective in vivo therapeutics.—Ruf, W., Edgington, T. S. Structural biology of tissue factor, the initiator of thrombogenesis in vivo. FASEB J. 8: 385‐390; 1994.


Nature | 2008

Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation

Frank Niessen; Florence Schaffner; Christian Furlan-Freguia; Rafal Pawlinski; Gourab Bhattacharjee; Jerold Chun; Claudia K. Derian; Patricia Andrade-Gordon; Hugh Rosen; Wolfram Ruf

Defining critical points of modulation across heterogeneous clinical syndromes may provide insight into new therapeutic approaches. Coagulation initiated by the cytokine-receptor family member known as tissue factor is a hallmark of systemic inflammatory response syndromes in bacterial sepsis and viral haemorrhagic fevers, and anticoagulants can be effective in severe sepsis with disseminated intravascular coagulation. The precise mechanism coupling coagulation and inflammation remains unresolved. Here we show that protease-activated receptor 1 (PAR1) signalling sustains a lethal inflammatory response that can be interrupted by inhibition of either thrombin or PAR1 signalling. The sphingosine 1-phosphate (S1P) axis is a downstream component of PAR1 signalling, and by combining chemical and genetic probes for S1P receptor 3 (S1P3) we show a critical role for dendritic cell PAR1–S1P3 cross-talk in regulating amplification of inflammation in sepsis syndrome. Conversely, dendritic cells sustain escalated systemic coagulation and are the primary hub at which coagulation and inflammation intersect within the lymphatic compartment. Loss of dendritic cell PAR1–S1P3 signalling sequesters dendritic cells and inflammation into draining lymph nodes, and attenuates dissemination of interleukin-1β to the lungs. Thus, activation of dendritic cells by coagulation in the lymphatics emerges as a previously unknown mechanism that promotes systemic inflammation and lethality in decompensated innate immune responses.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2005

Signaling of the Tissue Factor Coagulation Pathway in Angiogenesis and Cancer

Mattias Belting; Jasimuddin Ahamed; Wolfram Ruf

Activation of coagulation precedes or coincides with angiogenesis in wound healing and postischemic tissue regeneration. Advanced cancer is associated with a hypercoagulable state, and tissue factor expression by cancer cells has received widespread attention because of its significant contribution to the pathogenesis of cancer progression and metastasis. Our recent work demonstrates that tissue factor–mediated cellular signaling is relevant to cancer angiogenesis. Here we review the molecular mechanisms of tissue factor pathways in angiogenesis and tumorigenesis with emphasis on the intriguing role for tissue factor cytoplasmic domain signaling.


Journal of Thrombosis and Haemostasis | 2003

Specificity of coagulation factor signaling

Wolfram Ruf; Andrea Dorfleutner; Matthias Riewald

Summary.  Coagulation serine proteases signal through protease‐activated receptors (PARs). Thrombin‐dependent PAR signaling on platelets is essential for the hemostatic response and vascular thrombosis, but regulation of inflammation by PAR signaling is now recognized as an important aspect of the pro‐ and anti‐coagulant pathways. In tissue factor (TF)‐dependent initiation of coagulation, factor (F) Xa is the PAR‐1 or PAR‐2‐activating protease when associated with the transient TF–FVIIa–FXa complex. In the anticoagulant protein C (PC) pathway, the thrombin–thrombomodulin complex activates PC bound to the endothelial cell PC receptor (EPCR), which functions as a required coreceptor for activated PC‐mediated signaling through endothelial cell PAR‐1. Thus, the pro‐ and anti‐inflammatory receptor cascades are mechanistically coupled to immediate cell signaling, which precedes systemic coagulant or anticoagulant effects. In contrast to the substrate‐like recognition of PARs by thrombin, TF‐ or EPCR‐targeted activation of PARs generates cell‐type specificity, PAR selectivity and protease receptor cosignaling with the G‐protein‐coupled PAR response. Protease receptors are thus major determinants of the biological outcome of coagulation factor signaling on vascular cells.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2–mediated heparin-binding EGF signaling in endothelial cells

Katrin J. Svensson; Paulina Kucharzewska; Helena C. Christianson; Stefan Sköld; Tobias Löfstedt; Maria Johansson; Matthias Mörgelin; Johan Bengzon; Wolfram Ruf; Mattias Belting

Highly malignant tumors, such as glioblastomas, are characterized by hypoxia, endothelial cell (EC) hyperplasia, and hypercoagulation. However, how these phenomena of the tumor microenvironment may be linked at the molecular level during tumor development remains ill-defined. Here, we provide evidence that hypoxia up-regulates protease-activated receptor 2 (PAR-2), i.e., a G-protein–coupled receptor of coagulation-dependent signaling, in ECs. Hypoxic induction of PAR-2 was found to elicit an angiogenic EC phenotype and to specifically up-regulate heparin-binding EGF-like growth factor (HB-EGF). Inhibition of HB-EGF by antibody neutralization or heparin treatment efficiently counteracted PAR-2–mediated activation of hypoxic ECs. We show that PAR-2–dependent HB-EGF induction was associated with increased phosphorylation of ERK1/2, and inhibition of ERK1/2 phosphorylation attenuated PAR-2–dependent HB-EGF induction as well as EC activation. Tissue factor (TF), i.e., the major initiator of coagulation-dependent PAR signaling, was substantially induced by hypoxia in several types of cancer cells, including glioblastoma; however, TF was undetectable in ECs even at prolonged hypoxia, which precludes cell-autonomous PAR-2 activation through TF. Interestingly, hypoxic cancer cells were shown to release substantial amounts of TF that was mainly associated with secreted microvesicles with exosome-like characteristics. Vesicles derived from glioblastoma cells were found to trigger TF/VIIa–dependent activation of hypoxic ECs in a paracrine manner. We provide evidence of a hypoxia-induced signaling axis that links coagulation activation in cancer cells to PAR-2–mediated activation of ECs. The identified pathway may constitute an interesting target for the development of additional strategies to treat aggressive brain tumors.


Seminars in Immunopathology | 2012

Protease-activated receptor 2 signaling in inflammation

Andrea S. Rothmeier; Wolfram Ruf

Protease-activated receptors (PARs) are G protein-coupled receptors that are activated by proteolytical cleavage of the amino-terminus and thereby act as sensors for extracellular proteases. While coagulation proteases activate PARs to regulate hemostasis, thrombosis, and cardiovascular function, PAR2 is also activated in extravascular locations by a broad array of serine proteases, including trypsin, tissue kallikreins, coagulation factors VIIa and Xa, mast cell tryptase, and transmembrane serine proteases. Administration of PAR2-specific agonistic and antagonistic peptides, as well as studies in PAR2 knockout mice, identified critical functions of PAR2 in development, inflammation, immunity, and angiogenesis. Here, we review these roles of PAR2 with an emphasis on the role of coagulation and other extracellular protease pathways that cleave PAR2 in epithelial, immune, and neuronal cells to regulate physiological and pathophysiological processes.

Collaboration


Dive into the Wolfram Ruf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henri H. Versteeg

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthias Riewald

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yohei Miyagi

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge