Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jasmine E. Saros is active.

Publication


Featured researches published by Jasmine E. Saros.


Science | 2011

A Coherent Signature of Anthropogenic Nitrogen Deposition to Remote Watersheds of the Northern Hemisphere

Gordon W. Holtgrieve; Daniel E. Schindler; William O. Hobbs; Peter R. Leavitt; Eric J. Ward; Lynda Bunting; Guangjie Chen; Bruce P. Finney; Irene Gregory-Eaves; Sofia Holmgren; Mark J. Lisac; Peter J. Lisi; Koren R. Nydick; Lauren A. Rogers; Jasmine E. Saros; Daniel T. Selbie; Mark D. Shapley; Patrick B. Walsh; Alexander P. Wolfe

Deposition of reactive nitrogen from human activities occurred in the preindustrial era. Humans have more than doubled the amount of reactive nitrogen (Nr) added to the biosphere, yet most of what is known about its accumulation and ecological effects is derived from studies of heavily populated regions. Nitrogen (N) stable isotope ratios (15N:14N) in dated sediments from 25 remote Northern Hemisphere lakes show a coherent signal of an isotopically distinct source of N to ecosystems beginning in 1895 ± 10 years (±1 standard deviation). Initial shifts in N isotope composition recorded in lake sediments coincide with anthropogenic CO2 emissions but accelerate with widespread industrial Nr production during the past half century. Although current atmospheric Nr deposition rates in remote regions are relatively low, anthropogenic N has probably influenced watershed N budgets across the Northern Hemisphere for over a century.


Science | 2009

Sentinels of Change

Craig E. Williamson; Jasmine E. Saros; David W. Schindler

Lakes and reservoirs provide key insights into the effects and mechanisms of climate change.


Ecosystems | 2015

Ecosystem Consequences of Changing Inputs of Terrestrial Dissolved Organic Matter to Lakes: Current Knowledge and Future Challenges

Christopher T. Solomon; Stuart E. Jones; Brian C. Weidel; Ishi Buffam; Megan L. Fork; Jan Karlsson; Søren Larsen; Jay T. Lennon; Jordan S. Read; Jasmine E. Saros

Lake ecosystems and the services that they provide to people are profoundly influenced by dissolved organic matter derived from terrestrial plant tissues. These terrestrial dissolved organic matter (tDOM) inputs to lakes have changed substantially in recent decades, and will likely continue to change. In this paper, we first briefly review the substantial literature describing tDOM effects on lakes and ongoing changes in tDOM inputs. We then identify and provide examples of four major challenges which limit predictions about the implications of tDOM change for lakes, as follows: First, it is currently difficult to forecast future tDOM inputs for particular lakes or lake regions. Second, tDOM influences ecosystems via complex, interacting, physical-chemical-biological effects and our holistic understanding of those effects is still rudimentary. Third, non-linearities and thresholds in relationships between tDOM inputs and ecosystem processes have not been well described. Fourth, much understanding of tDOM effects is built on comparative studies across space that may not capture likely responses through time. We conclude by identifying research approaches that may be important for overcoming those challenges in order to provide policy- and management-relevant predictions about the implications of changing tDOM inputs for lakes.


Arctic, Antarctic, and Alpine Research | 2003

Recent Changes in the Diatom Community Structure of Lakes in the Beartooth Mountain Range, U.S.A.

Jasmine E. Saros; Sebastian J. Interlandi; Alexander P. Wolfe; Daniel R. Engstrom

Abstract In alpine lakes from several regions of the world, sedimentary diatom profiles indicate that rapid shifts in diatom community structure have occurred over the past century. A number of these recent shifts have been attributed to anthropogenic disturbances such as enhanced atmospheric nitrogen (N) deposition or climate change. When these disturbances are coupled, the response of alpine lakes becomes more complex and varies from region to region. The Beartooth Mountain Range, situated on the border between Montana and Wyoming, is part of the central Rocky Mountains; it is considered an area of relatively low N deposition but has experienced an increase in bulk precipitation rates, primarily in the form of snowfall, over the past century. We have examined a 400-yr sediment record from Beartooth Lake and have observed a rapid change in the diatom community structure over the past decade. A typical alpine lake diatom flora, consisting mainly of small Fragilaria sensu lato species, dominated this lake until approximately 1995, at which time Fragilaria crotonensis and Cyclotella bodanica var. lemanica rapidly increased to approximately 30% each of the total assemblage. The diatom assemblages from the tops and bottoms of short cores from three additional lakes in the area also reveal taxonomic shifts. These shifts appear indicative of both increased N loading to these systems as well as changes in thermal stratification patterns.


PLOS ONE | 2010

Quantifying recent ecological changes in remote lakes of North America and greenland using sediment diatom assemblages.

William O. Hobbs; Richard J. Telford; H. John B. Birks; Jasmine E. Saros; Roderick R. O. Hazewinkel; Bianca B. Perren; Émilie Saulnier-Talbot; Alexander P. Wolfe

Background Although arctic lakes have responded sensitively to 20th-century climate change, it remains uncertain how these ecological transformations compare with alpine and montane-boreal counterparts over the same interval. Furthermore, it is unclear to what degree other forcings, including atmospheric deposition of anthropogenic reactive nitrogen (Nr), have participated in recent regime shifts. Diatom-based paleolimnological syntheses offer an effective tool for retrospective assessments of past and ongoing changes in remote lake ecosystems. Methodology/Principal Findings We synthesized 52 dated sediment diatom records from lakes in western North America and west Greenland, spanning broad latitudinal and altitudinal gradients, and representing alpine (n = 15), arctic (n = 20), and forested boreal-montane (n = 17) ecosystems. Diatom compositional turnover (β-diversity) during the 20th century was estimated using Detrended Canonical Correspondence Analysis (DCCA) for each site and compared, for cores with sufficiently robust chronologies, to both the 19th century and the prior ∼250 years (Little Ice Age). For both arctic and alpine lakes, β-diversity during the 20th century is significantly greater than the previous 350 years, and increases with both latitude and altitude. Because no correlation is apparent between 20th-century diatom β-diversity and any single physical or limnological parameter (including lake and catchment area, maximum depth, pH, conductivity, [NO3 −], modeled Nr deposition, ambient summer and winter air temperatures, and modeled temperature trends 1948–2008), we used Principal Components Analysis (PCA) to summarize the amplitude of recent changes in relationship to lake pH, lake:catchment area ratio, modeled Nr deposition, and recent temperature trends. Conclusions/Significance The ecological responses of remote lakes to post-industrial environmental changes are complex. However, two regions reveal concentrations of sites with elevated 20th-century diatom β-diversity: the Arctic where temperatures are increasing most rapidly, and mid-latitude alpine lakes impacted by high Nr deposition rates. We predict that remote lakes will continue to shift towards new ecological states in the Anthropocene, particularly in regions where these two forcings begin to intersect geographically.


Ecology | 2012

Climate-induced changes in lake ecosystem structure inferred from coupled neo- and paleoecological approaches

Jasmine E. Saros; Jeffery R. Stone; Gregory T. Pederson; Krista E. H. Slemmons; Trisha L. Spanbauer; Anna Schliep; Douglas Cahl; Craig E. Williamson; Daniel R. Engstrom

Over the 20th century, surface water temperatures have increased in many lake ecosystems around the world, but long-term trends in the vertical thermal structure of lakes remain unclear, despite the strong control that thermal stratification exerts on the biological response of lakes to climate change. Here we used both neo- and paleoecological approaches to develop a fossil-based inference model for lake mixing depths and thereby refine understanding of lake thermal structure change. We focused on three common planktonic diatom taxa, the distributions of which previous research suggests might be affected by mixing depth. Comparative lake surveys and growth rate experiments revealed that these species respond to lake thermal structure when nitrogen is sufficient, with species optima ranging from shallower to deeper mixing depths. The diatom-based mixing depth model was applied to sedimentary diatom profiles extending back to 1750 AD in two lakes with moderate nitrate concentrations but differing climate settings. Thermal reconstructions were consistent with expected changes, with shallower mixing depths inferred for an alpine lake where treeline has advanced, and deeper mixing depths inferred for a boreal lake where wind strength has increased. The inference model developed here provides a new tool to expand and refine understanding of climate-induced changes in lake ecosystems.


Photochemical and Photobiological Sciences | 2009

Differences in UV transparency and thermal structure between alpine and subalpine lakes: implications for organisms

Kevin C. Rose; Craig E. Williamson; Jasmine E. Saros; Ruben Sommaruga; Janet M. Fischer

Ultraviolet (UV) radiation is a globally important abiotic factor influencing ecosystem structure and function in multiple ways. While UV radiation can be damaging to most organisms, several factors act to reduce UV exposure of organisms in aquatic ecosystems, the most important of which is dissolved organic carbon (DOC). In alpine lakes, very low concentrations of DOC and a thinner atmosphere lead to unusually high UV exposure levels. These high UV levels combine with low temperatures to provide a fundamentally different vertical structure to alpine lake ecosystems in comparison to most lowland lakes. Here, we discuss the importance of water temperature and UV transparency in structuring alpine lake ecosystems and the consequences for aquatic organisms that inhabit them. We present transparency data on a global data set of alpine lakes and nearby analogous subalpine lakes for comparison. We also present seasonal transparency data on a suite of alpine and subalpine lakes that demonstrate important differences in UV and photosynthetically active radiation (PAR, 400-700 nm) transparency patterns even within a single region. These data are used to explore factors regulating transparency in alpine lakes, to discuss implications of future environmental change on the structure and function of alpine lakes, and ways in which the UV transparency of these lakes can be used as a sentinel of environmental change.


Environmental Science & Technology | 2010

Melting Alpine Glaciers Enrich High-Elevation Lakes with Reactive Nitrogen

Jasmine E. Saros; Kevin C. Rose; David W. Clow; Verlin C. Stephens; Anijrea B. Nurse; Heather A. Arnett; Jeffery R. Stone; Craig E. Williamson; Alexander P. Wolfe

Alpine glaciers have receded substantially over the last century in many regions of the world. Resulting changes in glacial runoff not only affect the hydrological cycle, but can also alter the physical (i.e., turbidity from glacial flour) and biogeochemical properties of downstream ecosystems. Here we compare nutrient concentrations, transparency gradients, algal biomass, and fossil diatom species richness in two sets of high-elevation lakes: those fed by snowpack melt alone (SF lakes) and those fed by both glacial and snowpack meltwaters (GSF lakes). We found that nitrate (NO(3)(-)) concentrations in the GSF lakes were 1-2 orders of magnitude higher than in SF lakes. Although nitrogen (N) limitation is common in alpine lakes, algal biomass was lower in highly N-enriched GSF lakes than in the N-poor SF lakes. Contrary to expectations, GSF lakes were more transparent than SF lakes to ultraviolet and equally transparent to photosynthetically active radiation. Sediment diatom assemblages had lower taxonomic richness in the GSF lakes, a feature that has persisted over the last century. Our results demonstrate that the presence of glaciers on alpine watersheds more strongly influences NO(3)(-)concentrations in high-elevation lake ecosystems than any other geomorphic or biogeographic characteristic.


Environmental Science & Technology | 2014

Decadal trends reveal recent acceleration in the rate of recovery from acidification in the northeastern U.S.

Kristin E. Strock; Sarah J. Nelson; Jeffrey S. Kahl; Jasmine E. Saros; William H. McDowell

Previous reports suggest variable trends in recovery from acidification in northeastern U.S. surface waters in response to the Clean Air Act Amendments. Here we analyze recent trends in emissions, wet deposition, and lake chemistry using long-term data from a variety of lakes in the Adirondack Mountains and New England. Sulfate concentration in wet deposition declined by more than 40% in the 2000s and sulfate concentration in lakes declined at a greater rate from 2002 to 2010 than during the 1980s or 1990s (-3.27 μeq L(-1)year(-1) as compared to -1.26 μeq L(-1)year(-1)). During the 2000s, nitrate concentration in wet deposition declined by more than 50% and nitrate concentration in lakes, which had no linear trend prior to 2000, declined at a rate of -0.05 μeq L(-1)year(-1). Base cation concentrations, which decreased during the 1990s (-1.5 μeq L(-1) year(-1)), have stabilized in New England lakes. Although total aluminum concentrations increased since 1999 (2.57 μg L(-1) year(-1)), there was a shift to nontoxic, organic aluminum. Despite this recent acceleration in recovery in multiple variables, both ANC and pH continue to have variable trends. This may be due in part to variable trajectories in the concentrations of base cations and dissolved organic carbon among our study lakes.


Environmental Pollution | 2012

Mapping critical loads of nitrogen deposition for aquatic ecosystems in the Rocky Mountains, USA

Leora Nanus; David W. Clow; Jasmine E. Saros; Verlin C. Stephens; Donald H. Campbell

Spatially explicit estimates of critical loads of nitrogen (N) deposition (CL(Ndep)) for nutrient enrichment in aquatic ecosystems were developed for the Rocky Mountains, USA, using a geostatistical approach. The lowest CL(Ndep) estimates (<1.5 ± 1 kg N ha(-1) yr(-1)) occurred in high-elevation basins with steep slopes, sparse vegetation, and abundance of exposed bedrock and talus. These areas often correspond with areas of high N deposition (>3 kg N ha(-1) yr(-1)), resulting in CL(Ndep) exceedances ≥ 1.5 ± 1 kg N ha(-1) yr(-1). CL(Ndep) and CL(Ndep) exceedances exhibit substantial spatial variability related to basin characteristics and are highly sensitive to the NO(3)(-) threshold at which ecological effects are thought to occur. Based on an NO(3)(-) threshold of 0.5 μmol L(-1), N deposition exceeds CL(Ndep) in 21 ± 8% of the study area; thus, broad areas of the Rocky Mountains may be impacted by excess N deposition, with greatest impacts at high elevations.

Collaboration


Dive into the Jasmine E. Saros's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher L. Osburn

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sherilyn C. Fritz

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge