Jasmine Wong
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jasmine Wong.
Blood | 2011
Qing Li; Kevin M. Haigis; Andrew S. McDaniel; Emily Harding-Theobald; Scott C. Kogan; Keiko Akagi; Jasmine Wong; Benjamin S. Braun; Linda Wolff; Tyler Jacks; Kevin Shannon
NRAS is frequently mutated in hematologic malignancies. We generated Mx1-Cre, Lox-STOP-Lox (LSL)-Nras(G12D) mice to comprehensively analyze the phenotypic, cellular, and biochemical consequences of endogenous oncogenic Nras expression in hematopoietic cells. Here we show that Mx1-Cre, LSL-Nras(G12D) mice develop an indolent myeloproliferative disorder but ultimately die of a diverse spectrum of hematologic cancers. Expressing mutant Nras in hematopoietic tissues alters the distribution of hematopoietic stem and progenitor cell populations, and Nras mutant progenitors show distinct responses to cytokine growth factors. Injecting Mx1-Cre, LSL-Nras(G12D) mice with the MOL4070LTR retrovirus causes acute myeloid leukemia that faithfully recapitulates many aspects of human NRAS-associated leukemias, including cooperation with deregulated Evi1 expression. The disease phenotype in Mx1-Cre, LSL-Nras(G12D) mice is attenuated compared with Mx1-Cre, LSL-Kras(G12D) mice, which die of aggressive myeloproliferative disorder by 4 months of age. We found that endogenous Kras(G12D) expression results in markedly elevated Ras protein expression and Ras-GTP levels in Mac1(+) cells, whereas Mx1-Cre, LSL-Nras(G12D) mice show much lower Ras protein and Ras-GTP levels. Together, these studies establish a robust and tractable system for interrogating the differential properties of oncogenic Ras proteins in primary cells, for identifying candidate cooperating genes, and for testing novel therapeutic strategies.
Blood | 2008
Yan Zhang; Jasmine Wong; Mark Klinger; Mary T. Tran; Kevin Shannon; Nigel Killeen
MLL5 is a novel trithorax group gene and a candidate tumor suppressor gene located within a 2.5-Mb interval of chromosome band 7q22 that frequently is deleted in human myeloid malignancy. Here we show that inactivation of the Mll5 gene in mice results in a 30% reduction in the average representation of hematopoietic stem cells and in functional impairment of long-term hematopoietic repopulation potential under competitive conditions. Bone marrow cells from Mll5-deficient mice were defective in spleen colony-forming assays, and the mutant mice showed enhanced susceptibility to 5-fluorouracil-induced myelosuppression. Heterozygous and homozygous Mll5 mutant mice did not spontaneously develop hematologic cancers, and loss of Mll5 did not alter the phenotype of a fatal myeloproliferative disorder induced by oncogenic Kras in vivo. Collectively, the data reveal an important role for Mll5 in HSC homeostasis and provide a basis for further studies to explore its role in leukemogenesis.
Journal of Experimental Medicine | 2010
Letetia C. Jones; Guangwei Wei; Sabina Ševčíková; Vernon T. Phan; Sachi Jain; Angell Shieh; Jasmine Wong; Min Li; Joshua Dubansky; Mei Lin Maunakea; Rachel Ochoa; George Zhu; Thelma R. Tennant; Kevin Shannon; Scott W. Lowe; Michelle M. Le Beau; Scott C. Kogan
The leukemogenic effects of Myc drive recurrent trisomy in a mouse model of acute myeloid leukemia.
Blood | 2010
Jasmine Wong; Yan Zhang; Kenneth H. Lieuw; Mary T. Tran; Erna Forgo; Kelley Weinfurtner; Pilar Alzamora; Scott C. Kogan; Keiko Akagi; Linda Wolff; Michelle M. Le Beau; Nigel Killeen; Kevin Shannon
Monosomy 7 and del(7q) are associated with adverse features in myeloid malignancies. A 2.5-Mb commonly deleted segment (CDS) of chromosome band 7q22 is implicated as harboring a myeloid tumor suppressor gene (TSG); however, molecular analysis of candidate TSGs has not uncovered loss of function. To determine whether haploinsufficiency for the 7q22 CDS contributes to myeloid leukemogenesis, we performed sequential gene targeting to flank a region of orthologous synteny on mouse chromosome band 5A3 with loxP sites. We then generated Mx1-Cre, 5A3(fl) mutant mice and deleted the targeted interval in vivo. Although excision was inefficient, we confirmed somatic deletion of the 5A3 CDS in the hematopoietic stem cell compartment. Mx1-Cre, 5A3(fl) mice show normal hematologic parameters and do not spontaneously develop myeloid malignancies. The 5A3(fl) deletion does not cooperate with oncogenic Kras(G12D) expression, Nf1 inactivation, or retroviral mutagenesis to accelerate leukemia development and did not modulate responsiveness to antileukemia drugs. These studies demonstrate that it is feasible to somatically delete a large chromosomal segment implicated in tumor suppression in hematopoietic cell populations in vivo; however, our data do not support the hypothesis that the 7q22/5A3 CDS interval contains a myeloid TSG.
Breast Cancer Research and Treatment | 2017
Michael J. Campbell; Fl Baehner; Tess O’Meara; Ekene Ojukwu; Booyeon Han; Rita A. Mukhtar; Vickram Tandon; Max Endicott; Zelos Zhu; Jasmine Wong; Gregor Krings; Alfred Au; Joe W. Gray; Laura Esserman
PurposeThe recent increase in the incidence of ductal carcinoma in situ (DCIS) has sparked debate over the classification and treatment of this disease. Although DCIS is considered a precursor lesion to invasive breast cancer, some DCIS may have more or less risk than is realized. In this study, we characterized the immune microenvironment in DCIS to determine if immune infiltrates are predictive of recurrence.MethodsFifty-two cases of high-grade DCIS (HG-DCIS), enriched for large lesions and a history of recurrence, were age matched with 65 cases of non-high-grade DCIS (nHG-DCIS). Immune infiltrates were characterized by single- or dual-color staining of FFPE sections for the following antigens: CD4, CD8, CD20, FoxP3, CD68, CD115, Mac387, MRC1, HLA-DR, and PCNA. Nuance multispectral imaging software was used for image acquisition. Protocols for automated image analysis were developed using CellProfiler. Immune cell populations associated with risk of recurrence were identified using classification and regression tree analysis.ResultsHG-DCIS had significantly higher percentages of FoxP3+ cells, CD68+ and CD68+PCNA+ macrophages, HLA-DR+ cells, CD4+ T cells, CD20+ B cells, and total tumor infiltrating lymphocytes compared to nHG-DCIS. A classification tree, generated from 16 immune cell populations and 8 clinical parameters, identified three immune cell populations associated with risk of recurrence: CD8+HLADR+ T cells, CD8+HLADR− T cells, and CD115+ cells.ConclusionThese findings suggest that the tumor immune microenvironment is an important factor in identifying DCIS cases with the highest risk for recurrence and that manipulating the immune microenvironment may be an efficacious strategy to alter or prevent disease progression.
Best Practice & Research Clinical Haematology | 2008
Jasmine Wong; Michelle M. Le Beau; Kevin Shannon
Our molecular understanding of the how tumor suppressor gene (TSG) abnormalities contribute to myeloid malignancies is relatively limited. While the NF1 and TP53 TSGs follow the Knudson two-hit paradigm and undergo biallelic inactivation, there is increasing evidence that inactivation of a single allele of TSG such as RUNX1, PU.1 and RPS14 (haploinsufficiency) can also contribute to leukemogenesis. New technologies including high density single nucleotide polymorphism (SNP) arrays, RNA interference (RNAi) and chromosome engineering to develop mouse models with defined genetic rearrangements are emerging as potent tools for cloning and studying the function of TSGs. Notwithstanding these advances, the role of many chromosomal deletions that are commonly observed in myeloid malignancies remains uncertain, particularly the deletion of chromosomes 5, 7, 9 and 20. Since these deletions are often associated with resistance to current therapies, discovering the relevant TSGs and determining how they function in cell growth are high priorities.
World Journal of Clinical Cases | 2015
Elissa R. Price; Jasmine Wong; Rita A. Mukhtar; Nola M. Hylton; Laura Esserman
Magnetic resonance imaging (MRI) is highly sensitive in identifying residual breast cancer following neoadjuvant chemotherapy (NAC), and consequently is a commonly used imaging modality in locally advanced breast cancer patients. In these patients, tumor response is an important prognostic indicator. However, discrepancies between MRI findings and surgical pathology are well documented. Overestimation of residual disease by MRI may result in greater surgery than is actually required while underestimation may result in insufficient surgery. Thus, it is important to understand when MRI findings are reliable and when they are less accurate. MRI most accurately predicts pathology in triple negative, Her2 positive and hormone receptor negative tumors, especially if they are of a solid imaging phenotype. In these cases, post-NAC MRI is highly reliable for surgical planning. Hormone receptor positive cancers and those demonstrating non mass enhancement show lower concordance with surgical pathology, making surgical guidance more nebulous in these cases. Radiologists and surgeons must assess MRI response to NAC in the context of tumor subtype. Indiscriminate interpretations will prevent MRI from achieving its maximum potential in the pre-operative setting.
eLife | 2015
Jasmine Wong; Kelley Weinfurtner; Maria del pilar Alzamora; Scott C. Kogan; Michael R. Burgess; Yan Zhang; Joy Nakitandwe; Jing Ma; Jinjun Cheng; Shann-Ching Chen; Theodore T. Ho; Johanna Flach; Damien Reynaud; Emmanuelle Passegué; James R. Downing; Kevin Shannon
Chromosome 7 deletions are highly prevalent in myelodysplastic syndrome (MDS) and likely contribute to aberrant growth through haploinsufficiency. We generated mice with a heterozygous germ line deletion of a 2-Mb interval of chromosome band 5A3 syntenic to a commonly deleted segment of human 7q22 and show that mutant hematopoietic cells exhibit cardinal features of MDS. Specifically, the long-term hematopoietic stem cell (HSC) compartment is expanded in 5A3+/del mice, and the distribution of myeloid progenitors is altered. 5A3+/del HSCs are defective for lymphoid repopulating potential and show a myeloid lineage output bias. These cell autonomous abnormalities are exacerbated by physiologic aging and upon serial transplantation. The 5A3 deletion partially rescues defective repopulation in Gata2 mutant mice. 5A3+/del hematopoietic cells exhibit decreased expression of oxidative phosphorylation genes, increased levels of reactive oxygen species, and perturbed oxygen consumption. These studies provide the first functional data linking 7q22 deletions to MDS pathogenesis. DOI: http://dx.doi.org/10.7554/eLife.07839.001
Surgical Clinics of North America | 2018
Flora Varghese; Jasmine Wong
With increasing life expectancy and growth of the elderly US population, it becomes paramount that breast cancer research focuses more on the prevention, screening, and treatment of these patients. Age is no longer a cutoff for managing breast cancer in the elderly. Studies have shown the current undertreatment of cancer undermines survival, but the tide is turning to provide evidence-based medicine for the elderly. More often, clinicians and surgeons look not only at tumor-specific characteristics of breast cancer but also the functionality, tolerance, comorbidities, and life expectancy of patients to determine the best treatment.
JCI insight | 2018
Jasmine Wong; Victoria Bryant; Tamara Lamprecht; Jing Ma; Michael D. Walsh; Jason R. Schwartz; Maria del pilar Alzamora; Charles G. Mullighan; Mignon L. Loh; Raul C. Ribeiro; James R. Downing; William L. Carroll; Jeffrey H. Davis; Stuart Gold; Paul C. Rogers; Sara Israels; Rochelle Yanofsky; Kevin Shannon; Jeffery M. Klco
Germline SAMD9 and SAMD9L mutations cause a spectrum of multisystem disorders that carry a markedly increased risk of developing myeloid malignancies with somatic monosomy 7. Here, we describe 16 siblings, the majority of which were phenotypically normal, from 5 families diagnosed with myelodysplasia and leukemia syndrome with monosomy 7 (MLSM7; OMIM 252270) who primarily had onset of hematologic abnormalities during the first decade of life. Molecular analyses uncovered germline SAMD9L (n = 4) or SAMD9 (n = 1) mutations in these families. Affected individuals had a highly variable clinical course that ranged from mild and transient dyspoietic changes in the bone marrow to a rapid progression of myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) with monosomy 7. Expression of these gain-of-function SAMD9 and SAMD9L mutations reduces cell cycle progression, and deep sequencing demonstrated selective pressure favoring the outgrowth of clones that have either lost the mutant allele or acquired revertant mutations. The myeloid malignancies of affected siblings acquired cooperating mutations in genes that are also altered in sporadic cases of AML characterized by monosomy 7. These data have implications for understanding how SAMD9 and SAMD9L mutations contribute to myeloid transformation and for recognizing, counseling, and treating affected families.