Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin Shannon is active.

Publication


Featured researches published by Kevin Shannon.


Nature Reviews Cancer | 2007

Hyperactive Ras in developmental disorders and cancer

Suzanne Schubbert; Kevin Shannon; Gideon Bollag

Ras genes are the most common targets for somatic gain-of-function mutations in human cancer. Recently, germline mutations that affect components of the Ras–Raf–mitogen-activated and extracellular-signal regulated kinase kinase (MEK)–extracellular signal-regulated kinase (ERK) pathway were shown to cause several developmental disorders, including Noonan, Costello and cardio-facio-cutaneous syndromes. Many of these mutant alleles encode proteins with aberrant biochemical and functional properties. Here we will discuss the implications of germline mutations in the Ras–Raf–MEK–ERK pathway for understanding normal developmental processes and cancer pathogenesis.


Nature Genetics | 2006

Germline KRAS mutations cause Noonan syndrome

Suzanne Schubbert; Martin Zenker; Sara L. Rowe; Silke Böll; Cornelia Klein; Gideon Bollag; Ineke van der Burgt; Luciana Musante; Vera M. Kalscheuer; Lars-Erik Wehner; Hoa Nguyen; Brian L. West; Kam Y. J. Zhang; Erik A. Sistermans; Anita Rauch; Charlotte M. Niemeyer; Kevin Shannon; Christian P. Kratz

Noonan syndrome (MIM 163950) is characterized by short stature, facial dysmorphism and cardiac defects. Heterozygous mutations in PTPN11, which encodes SHP-2, cause ∼50% of cases of Noonan syndrome. The SHP-2 phosphatase relays signals from activated receptor complexes to downstream effectors, including Ras. We discovered de novo germline KRAS mutations that introduce V14I, T58I or D153V amino acid substitutions in five individuals with Noonan syndrome and a P34R alteration in a individual with cardio-facio-cutaneous syndrome (MIM 115150), which has overlapping features with Noonan syndrome. Recombinant V14I and T58I K-Ras proteins show defective intrinsic GTP hydrolysis and impaired responsiveness to GTPase activating proteins, render primary hematopoietic progenitors hypersensitive to growth factors and deregulate signal transduction in a cell lineage–specific manner. These studies establish germline KRAS mutations as a cause of human disease and infer that the constellation of developmental abnormalities seen in Noonan syndrome spectrum is, in large part, due to hyperactive Ras.


The New England Journal of Medicine | 1994

Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders.

Kevin Shannon; P. O'Connell; George A. Martin; Dorothy Paderanga; Kristin Olson; Patricia Dinndorf; Frank McCormick

BACKGROUND Children with type 1 neurofibromatosis (NF-1) are at increased risk for malignant myeloid disorders. Analysis of the NF-1 gene (NF1) suggests that the function of its product, neurofibromin, is reduced in affected persons and that NF1 belongs to the tumor-suppressor class of recessive cancer genes. This model is consistent with evidence that neurofibromin accelerates the intrinsic guanosine triphosphate-hydrolyzing activity of the Ras family of regulatory proteins. Loss of constitutional heterozygosity has not been reported in the benign tumors associated with NF-1, however, and has only been detected in a few malignant neural-crest tumors and in some tumor-derived cell lines. METHODS We studied DNA extracted from the bone marrow of 11 children with NF-1 in whom malignant myeloid disorders developed and from parental leukocytes. We used a series of polymorphic markers within and near NF1 to determine whether leukemogenesis was associated with structural alterations of the gene. RESULTS Bone marrow samples from five patients showed loss of heterozygosity. In each case, the NF1 allele was inherited from a parent with NF-1 and the normal allele was deleted. CONCLUSIONS These data provide evidence of NF1 may function as a tumor-suppressor allele in malignant myeloid diseases in children with NF-1 and that neurofibromin is a regulator of ras in early myelopoiesis.


Nature Genetics | 2008

Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon

Kevin M. Haigis; Krystle R. Kendall; Yufang Wang; Ann Cheung; Marcia C. Haigis; Jonathan N. Glickman; Michiko Niwa-Kawakita; Alejandro Sweet-Cordero; Judith Sebolt-Leopold; Kevin Shannon; Jeffrey Settleman; Marco Giovannini; Tyler Jacks

Kras is commonly mutated in colon cancers, but mutations in Nras are rare. We have used genetically engineered mice to determine whether and how these related oncogenes regulate homeostasis and tumorigenesis in the colon. Expression of K-RasG12D in the colonic epithelium stimulated hyperproliferation in a Mek-dependent manner. N-RasG12D did not alter the growth properties of the epithelium, but was able to confer resistance to apoptosis. In the context of an Apc-mutant colonic tumor, activation of K-Ras led to defects in terminal differentiation and expansion of putative stem cells within the tumor epithelium. This K-Ras tumor phenotype was associated with attenuated signaling through the MAPK pathway, and human colon cancer cells expressing mutant K-Ras were hypersensitive to inhibition of Raf, but not Mek. These studies demonstrate clear phenotypic differences between mutant Kras and Nras, and suggest that the oncogenic phenotype of mutant K-Ras might be mediated by noncanonical signaling through Ras effector pathways.


The New England Journal of Medicine | 1997

Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders

Lucy Side; Brigit R. Taylor; Matthew C. Cayouette; Edward R. Conner; Patricia Thompson; Michael C. Luce; Kevin Shannon

BACKGROUND The risk of malignant myeloid disorders in young children with neurofibromatosis type 1 is 200 to 500 times the normal risk. The gene for neurofibromatosis type 1 (NF1) encodes neurofibromin, a protein that negatively regulates signals transduced by Ras proteins. Genetic and biochemical data support the hypothesis that NF1 functions as a tumor-suppressor gene in immature myeloid cells, but inactivation of both NF1 alleles has not been demonstrated in leukemic cells from patients with neurofibromatosis type 1. METHODS Using an in vitro transcription and translation system, we screened bone marrow samples from 18 children with neurofibromatosis type 1 and myeloid disorders for NF1 mutations that cause a truncated protein. Mutations were confirmed by direct sequencing of genomic DNA from the patients, and from their affected parents, in cases of familial neurofibromatosis type 1. RESULTS Specimens from 9 of the 18 children contained abnormal peptide fragments, and truncating mutations of the NF1 gene were found in specimens from 8 of these children. The normal NF1 allele was absent in bone marrow samples from five of the eight children. We detected the same mutation in DNA from the affected parent of each child with familial neurofibromatosis type 1. CONCLUSIONS Both alleles of the NF1 gene are inactivated in leukemic cells in some patients with neurofibromatosis type 1. NF1 appears to function as a tumor-suppressor gene in immature myeloid cells.


Cancer Cell | 2008

Single-Cell Profiling Identifies Aberrant STAT5 Activation in Myeloid Malignancies with Specific Clinical and Biologic Correlates

Nikesh Kotecha; Nikki J. Flores; Jonathan M. Irish; Erin F. Simonds; Debbie Sakai; Sophie Archambeault; Ernesto Diaz-Flores; Marc A. Coram; Kevin Shannon; Garry P. Nolan; Mignon L. Loh

Progress in understanding the molecular pathogenesis of human myeloproliferative disorders (MPDs) has led to guidelines incorporating genetic assays with histopathology during diagnosis. Advances in flow cytometry have made it possible to simultaneously measure cell type and signaling abnormalities arising as a consequence of genetic pathologies. Using flow cytometry, we observed a specific evoked STAT5 signaling signature in a subset of samples from patients suspected of having juvenile myelomonocytic leukemia (JMML), an aggressive MPD with a challenging clinical presentation during active disease. This signature was a specific feature involving JAK-STAT signaling, suggesting a critical role of this pathway in the biological mechanism of this disorder and indicating potential targets for future therapies.


Blood | 2009

Mutations in CBL occur frequently in juvenile myelomonocytic leukemia

Mignon L. Loh; Debbie Sakai; Christian Flotho; Michelle Kang; Manfred Fliegauf; Sophie Archambeault; Charles G. Mullighan; Leslie Chen; Eva Bergstraesser; Carlos E. Bueso-Ramos; Peter D. Emanuel; Henrik Hasle; Jean-Pierre J. Issa; Marry M. van den Heuvel-Eibrink; Franco Locatelli; Jan Starý; Monica Trebo; Marcin W. Wlodarski; Marco Zecca; Kevin Shannon; Charlotte M. Niemeyer

Juvenile myelomonocytic leukemia is an aggressive myeloproliferative disorder characterized by malignant transformation in the hematopoietic stem cell compartment with proliferation of differentiated progeny. Seventy-five percent of patients harbor mutations in the NF1, NRAS, KRAS, or PTPN11 genes, which encode components of Ras signaling networks. Using single nucleotide polymorphism arrays, we identified a region of 11q isodisomy that contains the CBL gene in several JMML samples, and subsequently identified CBL mutations in 27 of 159 JMML samples. Thirteen of these mutations alter codon Y371. In this report, we also demonstrate that CBL and RAS/PTPN11 mutations were mutually exclusive in these patients. Moreover, the exclusivity of CBL mutations with respect to other Ras pathway-associated mutations indicates that CBL may have a role in deregulating this key pathway in JMML.


Journal of Biological Chemistry | 1999

Disruption of the Mouse Rce1 Gene Results in Defective Ras Processing and Mislocalization of Ras within Cells

Edward Kim; Patricia Ambroziak; James C. Otto; Brigit R. Taylor; Matthew Ashby; Kevin Shannon; Patrick J. Casey; Stephen G. Young

Little is known about the enzyme(s) required for the endoproteolytic processing of mammalian Ras proteins. We identified a mouse gene (designated Rce1) that shares sequence homology with a yeast gene (RCE1) implicated in the proteolytic processing of Ras2p. To define the role of Rce1in mammalian Ras processing, we generated and analyzedRce1-deficient mice. Rce1 deficiency was lethal late in embryonic development (after embryonic day 15.5). Multiple lines of evidence revealed that Rce1-deficient embryos and cells lacked the ability to endoproteolytically process Ras proteins. First, Ras proteins from Rce1-deficient cells migrated more slowly on SDS-polyacrylamide gels than Ras proteins from wild-type embryos and fibroblasts. Second, metabolic labeling ofRce1-deficient cells revealed that the Ras proteins were not carboxymethylated. Finally, membranes fromRce1-deficient fibroblasts lacked the capacity to proteolytically process farnesylated Ha-Ras, N-Ras, and Ki-Ras or geranylgeranylated Ki-Ras. The processing of two other prenylated proteins, the farnesylated Gγ1 subunit of transducin and geranylgeranylated Rap1B, was also blocked. The absence of endoproteolytic processing and carboxymethylation caused Ras proteins to be mislocalized within cells. These studies indicate thatRce1 is responsible for the endoproteolytic processing of the Ras proteins in mammals and suggest a broad role for this gene in processing other prenylated CAAX proteins.


Molecular Cell | 2000

Nf1 and Gmcsf Interact in Myeloid Leukemogenesis

Ron A. Birnbaum; Aengus O'Marcaigh; Zabihullah Wardak; You Yan Zhang; Glenn Dranoff; Tyler Jacks; D. Wade Clapp; Kevin Shannon

The NF1 tumor suppressor gene encodes neurofibromin, a GTPase-activating protein (GAP) for p21ras (Ras). Children with NF1 are predisposed to juvenile myelomonocytic leukemia (JMML). Some heterozygous Nf1 mutant mice develop a similar myeloproliferative disorder (MPD), and adoptive transfer of Nf1-deficient fetal liver cells consistently induces this MPD. Human JMML and murine Nf1-deficient cells are hypersensitive to granulocyte-macrophage colony-stimulating factor (GM-CSF) in methylcellulose cultures. We generated hematopoietic cells deficient in both Nf1 and Gmcsf to test whether GM-CSF is required to drive excessive proliferation of Nf1-/- cells in vivo. Here we show that GM-CSF play a central role in establishing and maintaining the MPD and that recipients engrafted with Nf1-/- Gmcsf-/- hematopoietic cells are hypersensitive to exogenous GM-CSF.


Journal of the American College of Cardiology | 2013

Prevention of Sudden Cardiac Death With Implantable Cardioverter-Defibrillators in Children and Adolescents With Hypertrophic Cardiomyopathy

Barry J. Maron; Paolo Spirito; Michael J. Ackerman; Susan A. Casey; Christopher Semsarian; N.A. Mark Estes; Kevin Shannon; Euan A. Ashley; Sharlene M. Day; Giuseppe Pacileo; Francesco Formisano; Emmanuela Devoto; A Anastasakis; J. Martijn Bos; Anna Woo; Camillo Autore; Robert H. Pass; Giuseppe Boriani; Ross Garberich; Adrian K. Almquist; Mark W. Russell; Luca Boni; Stuart Berger; Martin S. Maron; Mark S. Link

OBJECTIVES The aim of this study was to determine the efficacy of implantable cardioverter-defibrillators (ICDs) in children and adolescents with hypertrophic cardiomyopathy (HCM). BACKGROUND HCM is the most common cause of sudden death in the young. The availability of ICDs over the past decade for HCM has demonstrated the potential for sudden death prevention, predominantly in adult patients. METHODS A multicenter international registry of ICDs implanted (1987 to 2011) in 224 unrelated children and adolescents with HCM judged at high risk for sudden death was assembled. Patients received ICDs for primary (n = 188) or secondary (n = 36) prevention after undergoing evaluation at 22 referral and nonreferral institutions in the United States, Canada, Europe, and Australia. RESULTS Defibrillators were activated appropriately to terminate ventricular tachycardia or ventricular fibrillation in 43 of 224 patients (19%) over a mean of 4.3 ± 3.3 years. ICD intervention rates were 4.5% per year overall, 14.0% per year for secondary prevention after cardiac arrest, and 3.1% per year for primary prevention on the basis of risk factors (5-year cumulative probability 17%). The mean time from implantation to first appropriate discharge was 2.9 ± 2.7 years (range to 8.6 years). The primary prevention discharge rate terminating ventricular tachycardia or ventricular fibrillation was the same in patients who underwent implantation for 1, 2, or ≥3 risk factors (12 of 88 [14%], 10 of 71 [14%], and 4 of 29 [14%], respectively, p = 1.00). Extreme left ventricular hypertrophy was the most common risk factor present (alone or in combination with other markers) in patients experiencing primary prevention interventions (17 of 26 [65%]). ICD-related complications, particularly inappropriate shocks and lead malfunction, occurred in 91 patients (41%) at 17 ± 5 years of age. CONCLUSIONS In a high-risk pediatric HCM cohort, ICD interventions terminating life-threatening ventricular tachyarrhythmias were frequent. Extreme left ventricular hypertrophy was most frequently associated with appropriate interventions. The rate of device complications adds a measure of complexity to ICD decisions in this age group.

Collaboration


Dive into the Kevin Shannon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott C. Kogan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mignon L. Loh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Li

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge