Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason A. Bailey is active.

Publication


Featured researches published by Jason A. Bailey.


Journal of Alzheimer's Disease | 2010

GLP-1 Receptor Stimulation Reduces Amyloid-β Peptide Accumulation and Cytotoxicity in Cellular and Animal Models of Alzheimer’s Disease

Yazhou Li; Kara B. Duffy; Mary Ann Ottinger; Balmiki Ray; Jason A. Bailey; Harold W. Holloway; David Tweedie; TracyAnn Perry; Mark P. Mattson; Dimitrios Kapogiannis; Kumar Sambamurti; Debomoy K. Lahiri

Type 2 (T2) diabetes mellitus (DM) has been associated with an increased incidence of neurodegenerative disorders, including Alzheimers disease (AD). Several pathological features are shared between diabetes and AD, including dysfunctional insulin signaling and a dysregulation of glucose metabolism. It has therefore been suggested that not only may the two conditions share specific molecular mechanisms but also that agents with proven efficacy in one may be useful against the other. Hence, the present study characterized the effects of a clinically approved long-acting analogue, exendin-4 (Ex-4), of the endogenous insulin releasing incretin, glucagon-like peptide-1 (GLP-1), on stress-induced toxicity in neuronal cultures and on amyloid-beta protein (Abeta) and tau levels in triple transgenic AD (3xTg-AD) mice with and without streptozocin (STZ)-induced diabetes. Ex-4 ameliorated the toxicity of Abeta and oxidative challenge in primary neuronal cultures and human SH-SY5Y cells in a concentration-dependent manner. When 11 to 12.5 month old female 3xTg AD mice were challenged with STZ or saline, and thereafter treated with a continuous subcutaneous infusion of Ex-4 or vehicle, Ex-4 ameliorated the diabetic effects of STZ in 3xTg-AD mice, elevating plasma insulin and lowering both plasma glucose and hemoglobin A1c (HbA1c) levels. Furthermore, brain levels of Abeta protein precursor and Abeta, which were elevated in STZ 3xTg-AD mice, were significantly reduced in Ex-4 treated mice. Brain tau levels were unaffected following STZ challenge, but showed a trend toward elevation that was absent following Ex-4 treatment. Together, these results suggest a potential value of Ex-4 in AD, particularly when associated with T2DM or glucose intolerance.


Neuron | 2008

Transcriptional Regulation of β-Secretase by p25/cdk5 Leads to Enhanced Amyloidogenic Processing

Yi Wen; W. Haung Yu; Bryan Maloney; Jason A. Bailey; Junrong Ma; I. Marie; Thomas O. Maurin; Lili Wang; Helen Y. Figueroa; Mathieu Herman; Pavan Krishnamurthy; Li Liu; Emmanuel Planel; Lit Fui Lau; Debomoy K. Lahiri; Karen Duff

Cyclin-dependent kinase 5 (cdk5) has been implicated in Alzheimers disease (AD) pathogenesis. Here, we demonstrate that overexpression of p25, an activator of cdk5, led to increased levels of BACE1 mRNA and protein in vitro and in vivo. A p25/cdk5 responsive region containing multiple sites for signal transducer and activator of transcription (STAT1/3) was identified in the BACE1 promoter. STAT3 interacts with the BACE1 promoter, and p25-overexpressing mice had elevated levels of pSTAT3 and BACE1, whereas cdk5-deficient mice had reduced levels. Furthermore, mice with a targeted mutation in the STAT3 cdk5 responsive site had lower levels of BACE1. Increased BACE levels in p25 overexpressing mice correlated with enhanced amyloidogenic processing that could be reversed by a cdk5 inhibitor. These data demonstrate a pathway by which p25/cdk5 increases the amyloidogenic processing of APP through STAT3-mediated transcriptional control of BACE1 that could have implications for AD pathogenesis.


Journal of Neuroscience Research | 2010

Memantine lowers amyloid-β peptide levels in neuronal cultures and in APP/PS1 transgenic mice

George M. Alley; Jason A. Bailey; Demao Chen; Balmiki Ray; Lakshman Puli; Heikki Tanila; Pradeep K. Banerjee; Debomoy K. Lahiri

Memantine is a moderate‐affinity, uncompetitive N‐methyl‐D‐aspartate (NMDA) receptor antagonist that stabilizes cognitive, functional, and behavioral decline in patients with moderate to severe Alzheimers disease (AD). In AD, the extracellular deposition of fibrillogenic amyloid‐β peptides (Aβ) occurs as a result of aberrant processing of the full‐length Aβ precursor protein (APP). Memantine protects neurons from the neurotoxic effects of Aβ and improves cognition in transgenic mice with high brain levels of Aβ. However, it is unknown how memantine protects cells against neurodegeneration and affects APP processing and Aβ production. We report the effects of memantine in three different systems. In human neuroblastoma cells, memantine, at therapeutically relevant concentrations (1–4 μM), decreased levels of secreted APP and Aβ1–40. Levels of the potentially amylodogenic Aβ1–42 were undetectable in these cells. In primary rat cortical neuronal cultures, memantine treatment lowered Aβ1–42 secretion. At the concentrations used, memantine treatment was not toxic to neuroblastoma or primary cultures and increased cell viability and/or metabolic activity under certain conditions. In APP/presenilin‐1 (PS1) transgenic mice exhibiting high brain levels of Aβ1–42, oral dosing of memantine (20 mg/kg/day for 8 days) produced a plasma drug concentration of 0.96 μM and significantly reduced the cortical levels of soluble Aβ1–42. The ratio of Aβ1–40/Aβ1–42 increased in treated mice, suggesting effects on the γ‐secretase complex. Thus, memantine reduces the levels of Aβ peptides at therapeutic concentrations and may inhibit the accumulation of fibrillogenic Aβ in mammalian brains. Memantines ability to preserve neuronal cells against neurodegeneration, to increase metabolic activity, and to lower Aβ level has therapeutic implications for neurodegenerative disorders.


Addiction Biology | 2013

Alcohol drinking and deprivation alter basal extracellular glutamate concentrations and clearance in the mesolimbic system of alcohol-preferring (P) rats

Zheng Ming Ding; Zachary A. Rodd; Eric A. Engleman; Jason A. Bailey; Debomoy K. Lahiri; William J. McBride

The present study determined the effects of voluntary ethanol drinking and deprivation on basal extracellular glutamate concentrations and clearance in the mesolimbic system and tested the hypothesis that chronic ethanol drinking would persistently increase basal glutamate neurotransmission. Three groups of alcohol‐preferring (P) rats were used: ‘water group (WG),’ ‘ethanol maintenance group (MG; 24‐hour free choice water versus 15% ethanol)’ and ‘ethanol deprivation group (DG; 2 weeks of deprivation).’ Quantitative microdialysis and Western blots were conducted to measure basal extracellular glutamate concentrations, clearance and proteins associated with glutamate clearance. Chronic alcohol drinking produced a 70–100% increase of basal extracellular glutamate concentrations in the posterior ventral tegmental area (4.0 versus 7.0 μM) and nucleus accumbens shell (3.0 versus 6.0 μM). Glutamate clearances were reduced by 30–40% in both regions of MG rats compared with WG rats. In addition, Western blots revealed a 40–45% decrease of excitatory amino transporter 1 (EAAT1) protein, but no significant changes in the levels of EAAT2 or cystine‐glutamate antiporter in these regions of MG versus WG rats. The enhanced glutamate concentrations returned to control levels, accompanied by a recovery of glutamate clearance following deprivation. These results indicated that chronic alcohol drinking enhanced extracellular glutamate concentrations in the mesolimbic system, as a result, in part, of reduced clearance, suggesting that enhanced glutamate neurotransmission may contribute to the maintenance of alcohol drinking. However, because the increased glutamate levels returned to normal after deprivation, elevated glutamate neurotransmission may not contribute to the initiation of relapse drinking.


Gene | 2011

FUNCTIONAL ACTIVITY OF THE NOVEL ALZHEIMER’S AMYLOID β–PEPTIDE INTERACTING DOMAIN (AβID) IN THE APP AND BACE1 PROMOTER SEQUENCES AND IMPLICATIONS IN ACTIVATING APOPTOTIC GENES AND IN AMYLOIDOGENESIS

Jason A. Bailey; Bryan Maloney; Yuan Wen Ge; Debomoy K. Lahiri

Amyloid-β peptide (Aβ) plaque in the brain is the primary (post mortem) diagnostic criterion of Alzheimers disease (AD). The physiological role(s) of Aβ are poorly understood. We have previously determined an Aβ interacting domain (AβID) in the promoters of AD-associated genes (Maloney and Lahiri, 2011. Gene. 15,doi:10.1016/j.gene.2011.06.004. epub ahead of print.). This AβID interacts in a DNA sequence-specific manner with Aβ. We now demonstrate novel Aβ activity as a possible transcription factor. Herein, we detected Aβ-chromatin interaction in cell culture by ChIP assay. We observed that human neuroblastoma (SK-N-SH) cells treated with FITC conjugated Aβ1-40 localized Aβ to the nucleus in the presence of H2O2-mediated oxidative stress. Furthermore, primary rat fetal cerebrocortical cultures were transfected with APP and BACE1 promoter-luciferase fusions, and rat PC12 cultures were transfected with polymorphic APP promoter-CAT fusion clones. Transfected cells were treated with different Aβ peptides and/or H2O2. Aβ treatment of cell cultures produced a DNA sequence-specific response in cells transfected with polymorphic APP clones. Our results suggest the Aβ peptide may regulate its own production through feedback on its precursor protein and BACE1, leading to amyloidogenesis in AD.


PLOS ONE | 2011

Rivastigmine Lowers Aβ and Increases sAPPα Levels, Which Parallel Elevated Synaptic Markers and Metabolic Activity in Degenerating Primary Rat Neurons

Jason A. Bailey; Balmiki Ray; Debomoy K. Lahiri

Overproduction of amyloid-β (Aβ) protein in the brain has been hypothesized as the primary toxic insult that, via numerous mechanisms, produces cognitive deficits in Alzheimers disease (AD). Cholinesterase inhibition is a primary strategy for treatment of AD, and specific compounds of this class have previously been demonstrated to influence Aβ precursor protein (APP) processing and Aβ production. However, little information is available on the effects of rivastigmine, a dual acetylcholinesterase and butyrylcholinesterase inhibitor, on APP processing. As this drug is currently used to treat AD, characterization of its various activities is important to optimize its clinical utility. We have previously shown that rivastigmine can preserve or enhance neuronal and synaptic terminal markers in degenerating primary embryonic cerebrocortical cultures. Given previous reports on the effects of APP and Aβ on synapses, regulation of APP processing represents a plausible mechanism for the synaptic effects of rivastigmine. To test this hypothesis, we treated degenerating primary cultures with rivastigmine and measured secreted APP (sAPP) and Aβ. Rivastigmine treatment increased metabolic activity in these cultured cells, and elevated APP secretion. Analysis of the two major forms of APP secreted by these cultures, attributed to neurons or glia based on molecular weight showed that rivastigmine treatment significantly increased neuronal relative to glial secreted APP. Furthermore, rivastigmine treatment increased α-secretase cleaved sAPPα and decreased Aβ secretion, suggesting a therapeutic mechanism wherein rivastigmine alters the relative activities of the secretase pathways. Assessment of sAPP levels in rodent CSF following once daily rivastigmine administration for 21 days confirmed that elevated levels of APP in cell culture translated in vivo. Taken together, rivastigmine treatment enhances neuronal sAPP and shifts APP processing toward the α-secretase pathway in degenerating neuronal cultures, which mirrors the trend of synaptic proteins, and metabolic activity.


Journal of Neurochemistry | 2010

A novel effect of rivastigmine on pre-synaptic proteins and neuronal viability in a neurodegeneration model of fetal rat primary cortical cultures and its implication in Alzheimer’s disease

Jason A. Bailey; Debomoy K. Lahiri

J. Neurochem. (2010) 112, 843–853.


Journal of Neuroscience Methods | 2009

Molecular and immunocytochemical characterization of primary neuronal cultures from adult rat brain: Differential expression of neuronal and glial protein markers.

Balmiki Ray; Jason A. Bailey; Sumit Sarkar; Debomoy K. Lahiri

Neurobiological studies using primary neuronal cultures commonly employ fetal-derived neurons, but much less often adult brain-derived neurons. Our goal is to perform morphological and molecular characterization of primary neuronal cultures from adult rat brain, including the relative expression of neuronal and glial cell markers at different time points. We tested the hypothesis that long-term neuronal viability is compatible with glial proliferation in adult neuron culture. We examined neuron culture from adult rat brain, which was maintained at steady state up to 24 days, and characterized them on the basis of cellular, molecular and biochemical properties at different time points of the culture. We identified neuronal and glial cells by both immunocytochemical and western immunoblotting techniques using NSE and Tau as neuronal markers and GFAP as glial protein marker, which revealed the presence of predominantly neuronal cells in the initial phase of the culture and a rise in glial cells from day 12 onwards. Notably, neuronal cells were preserved in the culture along with the glial cells even at day 24. Transfection of the cultured cells with a GFP expression vector and plasmids containing a luciferase reporter gene under the control of two different gene promoters demonstrated DNA transfectability. Taken together, these results suggest a differential expression of neuronal and glial cells at different time points and long-term neuronal viability in the presence of glial proliferation. Such adult neurons serve as a suitable system for the application of neurodegeneration models and for drug target discovery in various brain disorders including Alzheimers disease.


The Journal of Neuroscience | 2015

Daidzein Augments Cholesterol Homeostasis via ApoE to Promote Functional Recovery in Chronic Stroke.

Eunhee Kim; Moon Sook Woo; Luye Qin; Thong C. Ma; Cesar Beltran; Yi Bao; Jason A. Bailey; Dale Corbett; Rajiv R. Ratan; Debomoy K. Lahiri; Sunghee Cho

Stroke is the worlds leading cause of physiological disability, but there are currently no available agents that can be delivered early after stroke to enhance recovery. Daidzein, a soy isoflavone, is a clinically approved agent that has a neuroprotective effect in vitro, and it promotes axon growth in an animal model of optic nerve crush. The current study investigates the efficacy of daidzein on neuroprotection and functional recovery in a clinically relevant mouse model of stroke recovery. In light of the fact that cholesterols are essential lipid substrates in injury-induced synaptic remodeling, we found that daidzein enhanced the cholesterol homeostasis genetic program, including Lxr and downstream transporters, Apoe, Abca1, and Abcg1 genes in vitro. Daidzein also elevated the cholesterol homeostasis genes in the poststroke brain with Apoe, the highest expressing transporter, but did not affect infarct volume or hemispheric swelling. Despite the absence of neuroprotection, daidzein improved motor/gait function in chronic stroke and elevated synaptophysin expression. However, the daidzein-enhanced functional benefits and synaptophysin expression were abolished in Apoe-knock-out mice, suggesting the importance of daidzein-induced ApoE upregulation in fostering stroke recovery. Dissociation between daidzein-induced functional benefits and the absence of neuroprotection further suggest the presence of nonoverlapping mechanisms underlying recovery processes versus acute pathology. With its known safety in humans, early and chronic use of daidzein aimed at augmenting ApoE may serve as a novel, translatable strategy to promote functional recovery in stroke patients without adverse acute effect. SIGNIFICANCE STATEMENT There have been recurring translational failures in treatment strategies for stroke. One underlying issue is the disparity in outcome analysis between animal and clinical studies. The former mainly depends on acute infarct size, whereas long-term functional recovery is an important outcome in patients. In an attempt to identify agents that promote functional recovery, we discovered that an FDA-approved soy isoflavone, daidzein, improved stroke-induced behavioral deficits via enhancing cholesterol homeostasis in chronic stroke, and this occurs without causing adverse effects in the acute phase. With its known safety in humans, the study suggests that the early and chronic use of daidzein serves as a potential strategy to promote functional recovery in stroke patients.


Annals of the New York Academy of Sciences | 2006

Neuronal differentiation is accompanied by increased levels of SNAP-25 protein in fetal rat primary cortical neurons: Implications in neuronal plasticity and Alzheimer's disease

Jason A. Bailey; Debomoy K. Lahiri

Abstract:  Alzheimers disease (AD) is accompanied by progressive memory loss and decline in general cognitive abilities. Neuropathological hallmarks include amyloid plaque formation, neurofibrillary tangles, and neuronal and synaptic loss. To improve research models in AD, we have characterized several aspects of the primary rat neuronal cell culture model, which relate directly to the study of neuroexocytosis, neuronal plasticity, and amyloidosis. We have attempted to isolate and assess the neuronal enrichment of a primary cortical cell culture by morphological and molecular techniques, following progress of these cultured cells for up to 18 days in culture to identify the optimum timeframe for the manipulation and data collection in these cells. We observed maximum neuronal differentiation around day 15, which was in decline by day 18, thus, the critical window for manipulations in these cultures seems to be between days 12–15. The substantial increase in neuritic length and density was apparent at very early time points and peaked at day 15. In parallel to morphological assessments, we measured levels of a group of selected neuronally important proteins, including cytoskeletal and synaptic proteins. Change in the levels of cell‐associated APP and synaptophysin were not as dramatic as that of SNAP‐25 or secreted APP. Notably, this increased differentiation is accompanied by a dramatic increase in levels of SNAP‐25 protein, which peaked at day 15 and declined thereafter. These results suggest that this neuronal population contains quantifiable presynaptic terminals. Thus, the establishment and molecular characterization of this neuronal model would have many implications in neuroscience research including synaptic differentiation and neuronal plasticity and for the evaluation of pharmacological interventions in the disease process.

Collaboration


Dive into the Jason A. Bailey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kumar Sambamurti

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Tweedie

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge