Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason A. Kahana is active.

Publication


Featured researches published by Jason A. Kahana.


Cell | 2001

Mps1 Is a Kinetochore-Associated Kinase Essential for the Vertebrate Mitotic Checkpoint

Ariane Abrieu; Laura Magnaghi-Jaulin; Jason A. Kahana; Marion Peter; Anna Castro; Suzanne Vigneron; Thierry Lorca; Don W. Cleveland; Jean-Claude Labbé

The mitotic checkpoint acts to inhibit entry into anaphase until all chromosomes have successfully attached to spindle microtubules. Unattached kinetochores are believed to release an activated form of Mad2 that inhibits APC/C-dependent ubiquitination and subsequent proteolysis of components needed for anaphase onset. Using Xenopus egg extracts, a vertebrate homolog of yeast Mps1p is shown here to be a kinetochore-associated kinase, whose activity is necessary to establish and maintain the checkpoint. Since high levels of Mad2 overcome checkpoint loss in Mps1-depleted extracts, Mps1 acts upstream of Mad2-mediated inhibition of APC/C. Mps1 is essential for the checkpoint because it is required for recruitment and retention of active CENP-E at kinetochores, which in turn is necessary for kinetochore association of Mad1 and Mad2.


Cell | 2000

CENP-E as an Essential Component of the Mitotic Checkpoint In Vitro

Ariane Abrieu; Jason A. Kahana; Kenneth W. Wood; Don W. Cleveland

Accurate chromatid separation is monitored by a checkpoint mechanism that delays anaphase onset until all centromeres are correctly attached to the mitotic spindle. Using Xenopus egg extracts, the kinetochore-associated microtubule motor protein CENP-E is now found to be required for establishing and maintaining this checkpoint. When CENP-E function is disrupted by immunodepletion or antibody addition, extracts fail to arrest in response to spindle damage. Mitotic arrest can be restored by addition of high levels of soluble MAD2, demonstrating that the absence of CENP-E eliminates kinetochore-dependent signaling but not the downstream steps in checkpoint signal transduction. Because it directly binds both to spindle microtubules and to the kinetochore-associated checkpoint kinase BUBR1, CENP-E is a central component in the vertebrate checkpoint that modulates signaling activity in a microtubule-dependent manner.


Molecular Microbiology | 1998

USE OF TIME-LAPSE MICROSCOPY TO VISUALIZE RAPID MOVEMENT OF THE REPLICATION ORIGIN REGION OF THE CHROMOSOME DURING THE CELL CYCLE IN BACILLUS SUBTILIS

Chris D. Webb; Peter L. Graumann; Jason A. Kahana; Aurelio A. Teleman; Pamela A. Silver; Richard Losick

We describe the use of time‐lapse fluorescence microscopy to visualize the movement of the DNA replication origin and terminus regions on the Bacillus subtilis chromosome during the course of the cell cycle. The origin and terminus regions were tagged with a cassette of tandem lac operator repeats and visualized through the use of a fusion of the green fluorescent protein to the LacI repressor. We have discovered that origin regions abruptly move apart towards the cell poles during a brief interval of the cell cycle. This movement was also seen in the absence of cell wall growth and in the absence of the product of the parB homologue spo0J. The origin regions moved apart an average distance of 1.4 μm in an 11 min period of abrupt movement, representing an average velocity of 0.17 μm min−1. and reaching a maximum velocity of greater than 0.27 μm min−1. The terminus region also exhibited a striking pattern of movement but not as far or a rapid as the origin region. These results provide evidence for a mitotic‐like motor that is responsible for segregation of the origin regions of the chromosomes.


Molecular and Cellular Biology | 1999

Interactions between a Nuclear Transporter and a Subset of Nuclear Pore Complex Proteins Depend on Ran GTPase

Matthias Seedorf; Marc Damelin; Jason A. Kahana; Tetsuya Taura; Pamela A. Silver

ABSTRACT Proteins to be transported into the nucleus are recognized by members of the importin-karyopherin nuclear transport receptor family. After docking at the nuclear pore complex (NPC), the cargo-receptor complex moves through the aqueous pore channel. Once cargo is released, the importin then moves back through the channel for new rounds of transport. Thus, importin and exportin, another member of this family involved in export, are thought to continuously shuttle between the nuclear interior and the cytoplasm. In order to understand how nuclear transporters traverse the NPC, we constructed functional protein fusions between several members of the yeast importin family, including Pse1p, Sxm1p, Xpo1p, and Kap95p, and the green fluorescent protein (GFP). Complexes containing nuclear transporters were isolated by using highly specific anti-GFP antibodies. Pse1-GFP was studied in the most detail. Pse1-GFP is in a complex with importin-α and -β (Srp1p and Kap95p in yeast cells) that is sensitive to the nucleotide-bound state of the Ran GTPase. In addition, Pse1p associates with the nucleoporins Nsp1p, Nup159p, and Nup116p, while Sxm1p, Xpo1p, and Kap95p show different patterns of interaction with nucleoporins. Association of Pse1p with nucleoporins also depends on the nucleotide-bound state of Ran; when Ran is in the GTP-bound state, the nucleoporin association is lost. A mutant form of Pse1p that does not bind Ran also fails to interact with nucleoporins. These data indicate that transport receptors such as Pse1p interact in a Ran-dependent manner with certain nucleoporins. These nucleoporins may represent major docking sites for Pse1p as it moves in or out of the nucleus via the NPC.


Journal of Pharmacology and Experimental Therapeutics | 2009

First Demonstration of Cerebrospinal Fluid and Plasma Aβ Lowering with Oral Administration of a β-Site Amyloid Precursor Protein-Cleaving Enzyme 1 Inhibitor in Nonhuman Primates

Sethu Sankaranarayanan; Marie A. Holahan; Dennis Colussi; Ming-Chih Crouthamel; Viswanath Devanarayan; Joan D. Ellis; Amy S. Espeseth; Adam T. Gates; Samuel Graham; Allison R. Gregro; Daria J. Hazuda; Jerome H. Hochman; Katharine M Holloway; Lixia Jin; Jason A. Kahana; Ming-Tain Lai; Janet Lineberger; Georgia B. McGaughey; Keith P. Moore; Philippe G. Nantermet; Beth Pietrak; Eric A. Price; Hemaka A. Rajapakse; Shaun R. Stauffer; Melissa A. Steinbeiser; Guy R. Seabrook; Harold G. Selnick; Xiao-Ping Shi; Matthew G. Stanton; John Swestock

β-Site amyloid precursor protein (APP)-cleaving enzyme (BACE) 1 cleavage of amyloid precursor protein is an essential step in the generation of the potentially neurotoxic and amyloidogenic Aβ42 peptides in Alzheimers disease. Although previous mouse studies have shown brain Aβ lowering after BACE1 inhibition, extension of such studies to nonhuman primates or man was precluded by poor potency, brain penetration, and pharmacokinetics of available inhibitors. In this study, a novel tertiary carbinamine BACE1 inhibitor, tertiary carbinamine (TC)-1, was assessed in a unique cisterna magna ported rhesus monkey model, where the temporal dynamics of Aβ in cerebrospinal fluid (CSF) and plasma could be evaluated. TC-1, a potent inhibitor (IC50 ∼ 0.4 nM), has excellent passive membrane permeability, low susceptibility to P-glycoprotein transport, and lowered brain Aβ levels in a mouse model. Intravenous infusion of TC-1 led to a significant but transient lowering of CSF and plasma Aβ levels in conscious rhesus monkeys because it underwent CYP3A4-mediated metabolism. Oral codosing of TC-1 with ritonavir, a potent CYP3A4 inhibitor, twice daily over 3.5 days in rhesus monkeys led to sustained plasma TC-1 exposure and a significant and sustained reduction in CSF sAPPβ, Aβ40, Aβ42, and plasma Aβ40 levels. CSF Aβ42 lowering showed an EC50 of ∼20 nM with respect to the CSF [TC-1] levels, demonstrating excellent concordance with its potency in a cell-based assay. These results demonstrate the first in vivo proof of concept of CSF Aβ lowering after oral administration of a BACE1 inhibitor in a nonhuman primate.


Journal of Pharmacology and Experimental Therapeutics | 2007

In Vivo β-Secretase 1 Inhibition Leads to Brain Aβ Lowering and Increased α-Secretase Processing of Amyloid Precursor Protein without Effect on Neuregulin-1

Sethu Sankaranarayanan; Eric A. Price; Guoxin Wu; Ming-Chih Crouthamel; Xiao-Ping Shi; Katherine Tugusheva; Keala X. Tyler; Jason A. Kahana; Joan D. Ellis; Lixia Jin; Thomas H. Steele; Shawn J. Stachel; Craig A. Coburn; Adam J. Simon

β-Secretase (BACE) cleavage of amyloid precursor protein (APP) is one of the first steps in the production of amyloid β peptide Aβ42, the putative neurotoxic species in Alzheimers disease. Recent studies have shown that BACE1 knockdown leads to hypomyelination, putatively caused by a decline in neuregulin (NRG)-1 processing. In this study, we have tested a potent cell-permeable BACE1 inhibitor (IC50 ∼ 30 nM) by administering it directly into the lateral ventricles of mice, expressing human wild-type (WT)-APP, to determine the consequences of BACE1 inhibition on brain APP and NRG-1 processing. BACE1 inhibition, in vivo, led to a significant dose- and time-dependent lowering of brain Aβ40 and Aβ42. BACE1 inhibition also led to a robust brain secreted (s)APPβ lowering that was accompanied by an increase in brain sAPPα levels. Although an increase in full-length NRG-1 levels was evident in 15-day-old BACE1 homozygous knockout (KO) (–/–) mice, in agreement with previous studies, this effect was also observed in 15-day-old heterozygous (+/–) mice, but it was not evident in 30-day-old and 2-year-old BACE1 KO (–/–) mice. Thus, BACE1 knockdown led to a transient decrease in NRG-1 processing in mice. Pharmacological inhibition of BACE1 in adult mice, which led to significant Aβ lowering, was without any significant effect on brain NRG-1 processing. Taken together, these results suggest that BACE1 is the major β-site cleavage enzyme for APP and that its inhibition can lower brain Aβ and redirect APP processing via the potentially nonamyloidogenic α-secretase pathway, without significantly altering NRG-1 processing.


Proceedings of the National Academy of Sciences of the United States of America | 2006

LRRTM3 promotes processing of amyloid-precursor protein by BACE1 and is a positional candidate gene for late-onset Alzheimer's disease

John Majercak; William J. Ray; Amy S. Espeseth; Adam J. Simon; Xiao-Ping Shi; Carrie Wolffe; Krista Getty; Shane Marine; Erica Stec; Marc Ferrer; Berta Strulovici; Steven R. Bartz; Adam T. Gates; Min Xu; Qian Huang; Lei Ma; Paul J. Shughrue; Julja Burchard; Dennis Colussi; Beth Pietrak; Jason A. Kahana; Dirk Beher; Thomas W. Rosahl; Mark S. Shearman; Daria J. Hazuda; Alan B. Sachs; Kenneth S. Koblan; Guy R. Seabrook; David J. Stone

Rare familial forms of Alzheimers disease (AD) are thought to be caused by elevated proteolytic production of the Aβ42 peptide from the β-amyloid-precursor protein (APP). Although the pathogenesis of the more common late-onset AD (LOAD) is not understood, BACE1, the protease that cleaves APP to generate the N terminus of Aβ42, is more active in patients with LOAD, suggesting that increased amyloid production processing might also contribute to the sporadic disease. Using high-throughput siRNA screening technology, we assessed 15,200 genes for their role in Aβ42 secretion and identified leucine-rich repeat transmembrane 3 (LRRTM3) as a neuronal gene that promotes APP processing by BACE1. siRNAs targeting LRRTM3 inhibit the secretion of Aβ40, Aβ42, and sAPPβ, the N-terminal APP fragment produced by BACE1 cleavage, from cultured cells and primary neurons by up to 60%, whereas overexpression increases Aβ secretion. LRRTM3 is expressed nearly exclusively in the nervous system, including regions affected during AD, such as the dentate gyrus. Furthermore, LRRTM3 maps to a region of chromosome 10 linked to both LOAD and elevated plasma Aβ42, and is structurally similar to a family of neuronal receptors that includes the NOGO receptor, an inhibitor of neuronal regeneration and APP processing. Thus, LRRTM3 is a functional and positional candidate gene for AD, and, given its receptor-like structure and restricted expression, a potential therapeutic target.


Clinical Biochemistry | 2008

Decrease in age-adjusted cerebrospinal fluid β-secretase activity in Alzheimer's subjects

Guoxin Wu; Sethu Sankaranarayanan; Kate Tugusheva; Jason A. Kahana; Guy Seabrook; Xiao-Ping Shi; Elizabeth King; Viswanath Devanarayan; Jacquelynn J. Cook; Adam J. Simon

OBJECTIVES To develop a novel cerebrospinal fluid (CSF) beta-secretase-1 activity assay and evaluate beta-secretase-1 (BACE-1) activity as a potential biomarker in human Alzheimers disease. METHODS The assay consisted of an enzymatic reaction of CSF samples with an optimized beta-secretase peptide substrate and the cleavage products were detected using a neo-epitope specific antibody. RESULTS The CSF BACE-1 activity assay described exhibits time, temperature, dose, and pH dependence, with sensitivity down to <1 pM of recombinant BACE-1 enzyme, and is completely blocked by BACE-1 inhibitors. The endogenous BACE-1 enzyme in CSF appears to exist as a c-terminally truncated protein, based on both western blotting and capture-based activity assays. In a small cohort of human subjects, an age-dependent increase in CSF BACE activity was observed (~1.0 pM/year, p<0.05). In Alzheimers disease subjects, a significant decline in age-adjusted CSF BACE activity was observed compared to controls (56% in the log-transformed scale, p=0.02). CONCLUSION We have developed a robust assay to measure CSF BACE-1 activity which could serve as a potential biomarker in human Alzheimers disease subjects.


Current protocols in molecular biology | 2001

Use of the A. victoria green fluorescent protein to study protein dynamics in vivo.

Jason A. Kahana; Pamela A. Silver

Fluorescent molecules serve as valuable tools for the detection of a variety of biochemical phenomena. Such reagents have been employed for protein localization, quantitation of gene expression, detection of nucleic acids, cell sorting, and determination of chemical concentrations. Although fluorescence is a useful tool for detecting molecules within cells, its application in vivo has heretofore been limited. The ideal vital fluorescent tag should (1) be detectable without causing cytological damage, (2) be able to label a wide variety of cell types readily, and (3) be able to be targeted to virtually any subcellular region. The recently cloned green fluorescent protein (GFP) from the jellyfish Aequorea victoria is such a molecule. This overview describes the use of this proteinaceous fluorophore for in vivo observation of cellular phenomena, including applications and problems with the use of GFP, a discussion of mutant GFPs with altered fluorescence characteristics, and also some details on microscopy requirements.


Current protocols in pharmacology | 2001

Use of the A. Victoria Green Fluorescent Protein to Study Protein Dynamics In Vivo

Jason A. Kahana; Pamela A. Silver

Fluorescent molecules serve as valuable tools for the detection of a variety of biochemical phenomena. Such reagents have been employed for protein localization, quantitation of gene expression, detection of nucleic acids, cell sorting, and determination of chemical concentrations. Although fluorescence is a useful tool for detecting molecules within cells, its application in vivo has been limited. The ideal vital fluorescent tag should (1) be detectable without causing cytological damage, (2) be able to label a wide variety of cell types readily, and (3) be able to be targeted to virtually any subcellular region. The recently cloned green fluorescent protein (GFP) from the jellyfish Aequorea victoria is such a molecule. This overview describes the use of this proteinaceous fluorophore for in vivo observation of cellular phenomena, including applications and problems with the use of GFP, a discussion of mutant GFPs with altered fluorescence characteristics, and also some details on microscopy requirements.

Collaboration


Dive into the Jason A. Kahana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam J. Simon

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiao-Ping Shi

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming-Chih Crouthamel

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Adam T. Gates

United States Military Academy

View shared research outputs
Researchain Logo
Decentralizing Knowledge