Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason A. Mills is active.

Publication


Featured researches published by Jason A. Mills.


Stem Cells | 2010

Generation of Transgene-Free Lung Disease-Specific Human Induced Pluripotent Stem Cells Using a Single Excisable Lentiviral Stem Cell Cassette

Aba Somers; Jyh-Chang Jean; Cesar A. Sommer; Amel Omari; Christopher C. Ford; Jason A. Mills; Lei Ying; Andreia Gianotti Sommer; Jenny M. Jean; Brenden W. Smith; Robert Lafyatis; Marie-France Demierre; Daniel J. Weiss; Deborah L. French; Paul Gadue; George J. Murphy; Gustavo Mostoslavsky; Darrell N. Kotton

The development of methods to achieve efficient reprogramming of human cells while avoiding the permanent presence of reprogramming transgenes represents a critical step toward the use of induced pluripotent stem cells (iPSC) for clinical purposes, such as disease modeling or reconstituting therapies. Although several methods exist for generating iPSC free of reprogramming transgenes from mouse cells or neonatal normal human tissues, a sufficiently efficient reprogramming system is still needed to achieve the widespread derivation of disease‐specific iPSC from humans with inherited or degenerative diseases. Here, we report the use of a humanized version of a single lentiviral “stem cell cassette” vector to accomplish efficient reprogramming of normal or diseased skin fibroblasts obtained from humans of virtually any age. Simultaneous transfer of either three or four reprogramming factors into human target cells using this single vector allows derivation of human iPSC containing a single excisable viral integration that on removal generates human iPSC free of integrated transgenes. As a proof of principle, here we apply this strategy to generate >100 lung disease‐specific iPSC lines from individuals with a variety of diseases affecting the epithelial, endothelial, or interstitial compartments of the lung, including cystic fibrosis, α‐1 antitrypsin deficiency‐related emphysema, scleroderma, and sickle‐cell disease. Moreover, we demonstrate that human iPSC generated with this approach have the ability to robustly differentiate into definitive endoderm in vitro, the developmental precursor tissue of lung epithelia. STEM CELLS 2010;28:1728–1740


Cell Stem Cell | 2012

Self-Renewing Endodermal Progenitor Lines Generated from Human Pluripotent Stem Cells

Xin Cheng; Lei Ying; Lin Lu; Aline M. Galvão; Jason A. Mills; Henry C. Lin; Darrell N. Kotton; Steven S. Shen; M. Cristina Nostro; John K. Choi; Mitchell J. Weiss; Deborah L. French; Paul Gadue

The use of human pluripotent stem cells for laboratory studies and cell-based therapies is hampered by their tumor-forming potential and limited ability to generate pure populations of differentiated cell types in vitro. To address these issues, we established endodermal progenitor (EP) cell lines from human embryonic and induced pluripotent stem cells. Optimized growth conditions were established that allow near unlimited (>10(16)) EP cell self-renewal in which they display a morphology and gene expression pattern characteristic of definitive endoderm. Upon manipulation of their culture conditions in vitro or transplantation into mice, clonally derived EP cells differentiate into numerous endodermal lineages, including monohormonal glucose-responsive pancreatic β-cells, hepatocytes, and intestinal epithelia. Importantly, EP cells are nontumorigenic in vivo. Thus, EP cells represent a powerful tool to study endoderm specification and offer a potentially safe source of endodermal-derived tissues for transplantation therapies.


Blood | 2015

Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia.

Iléana Antony-Debré; Vladimir T. Manchev; Nathalie Balayn; Dominique Bluteau; Cécile Tomowiak; Céline Legrand; Thierry Langlois; Olivia Bawa; Lucie Tosca; Gérard Tachdjian; Bruno Leheup; Najet Debili; Isabelle Plo; Jason A. Mills; Deborah L. French; Mitchell J. Weiss; Eric Solary; Rémi Favier; William Vainchenker; Hana Raslova

To explore how RUNX1 mutations predispose to leukemia, we generated induced pluripotent stem cells (iPSCs) from 2 pedigrees with germline RUNX1 mutations. The first, carrying a missense R174Q mutation, which acts as a dominant-negative mutant, is associated with thrombocytopenia and leukemia, and the second, carrying a monoallelic gene deletion inducing a haploinsufficiency, presents only as thrombocytopenia. Hematopoietic differentiation of these iPSC clones demonstrated profound defects in erythropoiesis and megakaryopoiesis and deregulated expression of RUNX1 targets. iPSC clones from patients with the R174Q mutation specifically generated an increased amount of granulomonocytes, a phenotype reproduced by an 80% RUNX1 knockdown in the H9 human embryonic stem cell line, and a genomic instability. This phenotype, found only with a lower dosage of RUNX1, may account for development of leukemia in patients. Altogether, RUNX1 dosage could explain the differential phenotype according to RUNX1 mutations, with a haploinsufficiency leading to thrombocytopenia alone in a majority of cases whereas a more complete gene deletion predisposes to leukemia.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells

Stella T. Chou; Marta Byrska-Bishop; Joanna Tober; Yu Yao; Daniel VanDorn; Joanna B. Opalinska; Jason A. Mills; John K. Choi; Nancy A. Speck; Paul Gadue; Ross C. Hardison; Richard L. Nemiroff; Deborah L. French; Mitchell J. Weiss

Patients with Down syndrome (trisomy 21, T21) have hematologic abnormalities throughout life. Newborns frequently exhibit abnormal blood counts and a clonal preleukemia. Human T21 fetal livers contain expanded erythro-megakaryocytic precursors with enhanced proliferative capacity. The impact of T21 on the earliest stages of embryonic hematopoiesis is unknown and nearly impossible to examine in human subjects. We modeled T21 yolk sac hematopoiesis using human induced pluripotent stem cells (iPSCs). Blood progenitor populations generated from T21 iPSCs were present at normal frequency and proliferated normally. However, their developmental potential was altered with enhanced erythropoiesis and reduced myelopoiesis, but normal megakaryocyte production. These abnormalities overlap with those of T21 fetal livers, but also reflect important differences. Our studies show that T21 confers distinct developmental stage- and species-specific hematopoietic defects. More generally, we illustrate how iPSCs can provide insight into early stages of normal and pathological human development.


PLOS ONE | 2013

AAV-Mediated Gene Therapy for Choroideremia: Preclinical Studies in Personalized Models

Vidyullatha Vasireddy; Jason A. Mills; Rajashekhar Gaddameedi; Etiena Basner-Tschakarjan; Monika Köhnke; Aaron D. Black; Krill Alexandrov; Shangzhen Zhou; Albert M. Maguire; Daniel C. Chung; Helen Mac; Lisa M. Sullivan; Paul Gadue; Jeannette L. Bennicelli; Deborah L. French; Jean Bennett

Choroideremia (CHM) is an X- linked retinal degeneration that is symptomatic in the 1st or 2nd decade of life causing nyctalopia and loss of peripheral vision. The disease progresses through mid-life, when most patients become blind. CHM is a favorable target for gene augmentation therapy, as the disease is due to loss of function of a protein necessary for retinal cell health, Rab Escort Protein 1 (REP1).The CHM cDNA can be packaged in recombinant adeno-associated virus (rAAV), which has an established track record in human gene therapy studies, and, in addition, there are sensitive and quantitative assays to document REP1 activity. An animal model that accurately reflects the human condition is not available. In this study, we tested the ability to restore REP1 function in personalized in vitro models of CHM: lymphoblasts and induced pluripotent stems cells (iPSCs) from human patients. The initial step of evaluating safety of the treatment was carried out by evaluating for acute retinal histopathologic effects in normal-sighted mice and no obvious toxicity was identified. Delivery of the CHM cDNA to affected cells restores REP1 enzymatic activity and also restores proper protein trafficking. The gene transfer is efficient and the preliminary safety data are encouraging. These studies pave the way for a human clinical trial of gene therapy for CHM.


Journal of Visualized Experiments | 2012

Generation of human induced pluripotent stem cells from peripheral blood using the STEMCCA lentiviral vector

Andreia Gianotti Sommer; Sarah S. Rozelle; Spencer K. Sullivan; Jason A. Mills; Seonmi Park; Brenden W. Smith; Amulya Iyer; Deborah L. French; Darrell N. Kotton; Paul Gadue; George J. Murphy; Gustavo Mostoslavsky

Through the ectopic expression of four transcription factors, Oct4, Klf4, Sox2 and cMyc, human somatic cells can be converted to a pluripotent state, generating so-called induced pluripotent stem cells (iPSCs)(1-4). Patient-specific iPSCs lack the ethical concerns that surround embryonic stem cells (ESCs) and would bypass possible immune rejection. Thus, iPSCs have attracted considerable attention for disease modeling studies, the screening of pharmacological compounds, and regenerative therapies(5). We have shown the generation of transgene-free human iPSCs from patients with different lung diseases using a single excisable polycistronic lentiviral Stem Cell Cassette (STEMCCA) encoding the Yamanaka factors(6). These iPSC lines were generated from skin fibroblasts, the most common cell type used for reprogramming. Normally, obtaining fibroblasts requires a skin punch biopsy followed by expansion of the cells in culture for a few passages. Importantly, a number of groups have reported the reprogramming of human peripheral blood cells into iPSCs(7-9). In one study, a Tet inducible version of the STEMCCA vector was employed(9), which required the blood cells to be simultaneously infected with a constitutively active lentivirus encoding the reverse tetracycline transactivator. In contrast to fibroblasts, peripheral blood cells can be collected via minimally invasive procedures, greatly reducing the discomfort and distress of the patient. A simple and effective protocol for reprogramming blood cells using a constitutive single excisable vector may accelerate the application of iPSC technology by making it accessible to a broader research community. Furthermore, reprogramming of peripheral blood cells allows for the generation of iPSCs from individuals in which skin biopsies should be avoided (i.e. aberrant scarring) or due to pre-existing disease conditions preventing access to punch biopsies. Here we demonstrate a protocol for the generation of human iPSCs from peripheral blood mononuclear cells (PBMCs) using a single floxed-excisable lentiviral vector constitutively expressing the 4 factors. Freshly collected or thawed PBMCs are expanded for 9 days as described(10,11) in medium containing ascorbic acid, SCF, IGF-1, IL-3 and EPO before being transduced with the STEMCCA lentivirus. Cells are then plated onto MEFs and ESC-like colonies can be visualized two weeks after infection. Finally, selected clones are expanded and tested for the expression of the pluripotency markers SSEA-4, Tra-1-60 and Tra-1-81. This protocol is simple, robust and highly consistent, providing a reliable methodology for the generation of human iPSCs from readily accessible 4 ml of blood.


Blood | 2014

High-level transgene expression in induced pluripotent stem cell–derived megakaryocytes: correction of Glanzmann thrombasthenia

Spencer K. Sullivan; Jason A. Mills; Sevasti B. Koukouritaki; Karen K. Vo; Randolph B. Lyde; Prasuna Paluru; Guoha Zhao; Li Zhai; Lisa M. Sullivan; Yuhuan Wang; Siddharth Kishore; Eyad Z. Gharaibeh; Michele P. Lambert; David A. Wilcox; Deborah L. French; Mortimer Poncz; Paul Gadue

Megakaryocyte-specific transgene expression in patient-derived induced pluripotent stem cells (iPSCs) offers a new approach to study and potentially treat disorders affecting megakaryocytes and platelets. By using a Gp1ba promoter, we developed a strategy for achieving a high level of protein expression in human megakaryocytes. The feasibility of this approach was demonstrated in iPSCs derived from two patients with Glanzmann thrombasthenia (GT), an inherited platelet disorder caused by mutations in integrin αIIbβ3. Hemizygous insertion of Gp1ba promoter-driven human αIIb complementary DNA into the AAVS1 locus of iPSCs led to high αIIb messenger RNA and protein expression and correction of surface αIIbβ3 in megakaryocytes. Agonist stimulation of these cells displayed recovery of integrin αIIbβ3 activation. Our findings demonstrate a novel approach to studying human megakaryocyte biology as well as functional correction of the GT defect, offering a potential therapeutic strategy for patients with diseases that affect platelet function.


Stem cell reports | 2015

Emergence of a stage-dependent human liver disease signature with directed differentiation of alpha-1 antitrypsin-deficient iPS cells.

Andrew A. Wilson; Lei Ying; Marc Liesa; Charis Patricia Segeritz; Jason A. Mills; Steven S. Shen; Jyh-Chang Jean; Geordie C. Lonza; Derek C. Liberti; Alex H. Lang; Jean Nazaire; Adam C. Gower; Franz Josef Müeller; Pankaj Mehta; Adriana Ordóñez; David A. Lomas; Ludovic Vallier; George J. Murphy; Gustavo Mostoslavsky; Avrum Spira; Orian S. Shirihai; Maria I. Ramirez; Paul Gadue; Darrell N. Kotton

Summary Induced pluripotent stem cells (iPSCs) provide an inexhaustible source of cells for modeling disease and testing drugs. Here we develop a bioinformatic approach to detect differences between the genomic programs of iPSCs derived from diseased versus normal human cohorts as they emerge during in vitro directed differentiation. Using iPSCs generated from a cohort carrying mutations (PiZZ) in the gene responsible for alpha-1 antitrypsin (AAT) deficiency, we find that the global transcriptomes of PiZZ iPSCs diverge from normal controls upon differentiation to hepatic cells. Expression of 135 genes distinguishes PiZZ iPSC-hepatic cells, providing potential clues to liver disease pathogenesis. The disease-specific cells display intracellular accumulation of mutant AAT protein, resulting in increased autophagic flux. Furthermore, we detect beneficial responses to the drug carbamazepine, which further augments autophagic flux, but adverse responses to known hepatotoxic drugs. Our findings support the utility of iPSCs as tools for drug development or prediction of toxicity.


Stem Cell Research | 2014

The negative impact of Wnt signaling on megakaryocyte and primitive erythroid progenitors derived from human embryonic stem cells

Prasuna Paluru; Kristin M. Hudock; Xin Cheng; Jason A. Mills; Lei Ying; Aline M. Galvão; Lin Lu; Amita Tiyaboonchai; Xiuli Sim; Spencer K. Sullivan; Deborah L. French; Paul Gadue

The Wnt gene family consists of structurally related genes encoding secreted signaling molecules that have been implicated in many developmental processes, including regulation of cell fate and patterning during embryogenesis. Previously, we found that Wnt signaling is required for primitive or yolk sac-derived-erythropoiesis using the murine embryonic stem cell (ESC) system. Here, we examine the effect of Wnt signaling on the formation of early hematopoietic progenitors derived from human ESCs. The first hematopoietic progenitor cells in the human ESC system express the pan-hematopoietic marker CD41 and the erythrocyte marker, glycophorin A or CD235. We have developed a novel serum-free, feeder-free, adherent differentiation system that can efficiently generate large numbers of CD41+CD235+ cells. We demonstrate that this cell population contains progenitors not just for primitive erythroid and megakaryocyte cells but for the myeloid lineage as well and term this population the primitive common myeloid progenitor (CMP). Treatment of mesoderm-specified cells with Wnt3a led to a loss of hematopoietic colony-forming ability while the inhibition of canonical Wnt signaling with DKK1 led to an increase in the number of primitive CMPs. Canonical Wnt signaling also inhibits the expansion and/or survival of primitive erythrocytes and megakaryocytes, but not myeloid cells, derived from this progenitor population. These findings are in contrast to the role of Wnt signaling during mouse ESC differentiation and demonstrate the importance of the human ESC system in studying species-specific differences in development.


Stem cell reports | 2015

OCT4 Coordinates with WNT Signaling to Pre-pattern Chromatin at the SOX17 Locus during Human ES Cell Differentiation into Definitive Endoderm

Lei Ying; Jason A. Mills; Deborah L. French; Paul Gadue

Summary We demonstrate that the pluripotency gene OCT4 has a role in regulating differentiation via Wnt signaling. OCT4 expression levels in human embryonic stem cells increases transiently during the first 24 hr of in vitro differentiation, with OCT4 occupancy increasing at endoderm regulators such as SOX17 and FOXA2. This increased occupancy correlates with loss of the PRC2 complex and the inhibitory histone mark H3K27me3. Knockdown of OCT4 during differentiation inhibits mesendoderm formation and removal of the H3K27me3 mark from the SOX17 promoter, suggesting that OCT4 acts to induce removal of the PRC2 complex. Furthermore, OCT4 and β-catenin can be co-immunoprecipitated upon differentiation, and Wnt stimulation is required for the enhanced OCT4 occupancy and loss of the PRC2 complex from the SOX17 promoter. In conclusion, our study reveals that OCT4, a master regulator of pluripotency, may also collaborate with Wnt signaling to drive endoderm induction by pre-patterning epigenetic markers on endodermal promoters.

Collaboration


Dive into the Jason A. Mills's collaboration.

Top Co-Authors

Avatar

Deborah L. French

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Paul Gadue

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Mitchell J. Weiss

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Spencer K. Sullivan

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Lisa M. Sullivan

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Lei Ying

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Bennett

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Lin Lu

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Marisa Apicella

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge