Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitchell J. Weiss is active.

Publication


Featured researches published by Mitchell J. Weiss.


Nature Genetics | 2000

Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1.

Kim E. Nichols; John D. Crispino; Mortimer Poncz; James G. White; Stuart H. Orkin; John M. Maris; Mitchell J. Weiss

Haematopoietic development is regulated by nuclear protein complexes that coordinate lineage-specific patterns of gene expression. Targeted mutagenesis in embryonic stem cells and mice has revealed roles for the X-linked gene Gata1 in erythrocyte and megakaryocyte differentiation. GATA-1 is the founding member of a family of DNA-binding proteins that recognize the motif WGATAR through a conserved multifunctional domain consisting of two C4-type zinc fingers. Here we describe a family with X-linked dyserythropoietic anaemia and thrombocytopenia due to a substitution of methionine for valine at amino acid 205 of GATA-1. This highly conserved valine is necessary for interaction of the amino-terminal zinc finger of GATA-1 with its essential cofactor, FOG-1 (for friend of GATA-1; refs). We show that the V205M mutation abrogates the interaction between Gata-1 and Fog-1, inhibiting the ability of Gata-1 to rescue erythroid differentiation in an erythroid cell line deficient for Gata-1 (G1E). Our findings underscore the importance of FOG-1:Gata-1 associations in both megakaryocyte and erythroid development, and suggest that other X-linked anaemias or thrombocytopenias may be caused by defects in GATA1.


Nature | 2006

Mitoferrin is essential for erythroid iron assimilation

George C. Shaw; John J. Cope; Liangtao Li; Kenneth Corson; Candace Hersey; Gabriele E. Ackermann; Babette Gwynn; Amy J. Lambert; Rebecca A. Wingert; David Traver; Nikolaus S. Trede; Bruce Barut; Yi Zhou; Emmanuel Minet; Adriana Donovan; Alison Brownlie; Rena Balzan; Mitchell J. Weiss; Luanne L. Peters; Jerry Kaplan; Leonard I. Zon; Barry H. Paw

Iron has a fundamental role in many metabolic processes, including electron transport, deoxyribonucleotide synthesis, oxygen transport and many essential redox reactions involving haemoproteins and Fe–S cluster proteins. Defective iron homeostasis results in either iron deficiency or iron overload. Precise regulation of iron transport in mitochondria is essential for haem biosynthesis, haemoglobin production and Fe–S cluster protein assembly during red cell development. Here we describe a zebrafish mutant, frascati (frs), that shows profound hypochromic anaemia and erythroid maturation arrest owing to defects in mitochondrial iron uptake. Through positional cloning, we show that the gene mutated in the frs mutant is a member of the vertebrate mitochondrial solute carrier family (SLC25) that we call mitoferrin (mfrn). mfrn is highly expressed in fetal and adult haematopoietic tissues of zebrafish and mouse. Erythroblasts generated from murine embryonic stem cells null for Mfrn (also known as Slc25a37) show maturation arrest with severely impaired incorporation of 55Fe into haem. Disruption of the yeast mfrn orthologues, MRS3 and MRS4, causes defects in iron metabolism and mitochondrial Fe–S cluster biogenesis. Murine Mfrn rescues the defects in frs zebrafish, and zebrafish mfrn complements the yeast mutant, indicating that the function of the gene may be highly conserved. Our data show that mfrn functions as the principal mitochondrial iron importer essential for haem biosynthesis in vertebrate erythroblasts.


Genome Biology | 2012

An encyclopedia of mouse DNA elements (Mouse ENCODE)

John A. Stamatoyannopoulos; Michael Snyder; Ross C. Hardison; Bing Ren; Thomas R. Gingeras; David M. Gilbert; Mark Groudine; M. A. Bender; Rajinder Kaul; Theresa K. Canfield; Erica Giste; Audra K. Johnson; Mia Zhang; Gayathri Balasundaram; Rachel Byron; Vaughan Roach; Peter J. Sabo; Richard Sandstrom; A Sandra Stehling; Robert E. Thurman; Sherman M. Weissman; Philip Cayting; Manoj Hariharan; Jin Lian; Yong Cheng; Stephen G. Landt; Zhihai Ma; Barbara J. Wold; Job Dekker; Gregory E. Crawford

To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome.


Proceedings of the National Academy of Sciences of the United States of America | 2003

GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling

Jeffrey A. Grass; Meghan E. Boyer; Saumen Pal; Jing Wu; Mitchell J. Weiss; Emery H. Bresnick

Interplay among GATA transcription factors is an important determinant of cell fate during hematopoiesis. Although GATA-2 regulates hematopoietic stem cell function, mechanisms controlling GATA-2 expression are undefined. Of particular interest is the repression of GATA-2, because sustained GATA-2 expression in hematopoietic stem and progenitor cells alters hematopoiesis. GATA-2 transcription is derepressed in erythroid precursors lacking GATA-1, but the underlying mechanisms are unknown. Using chromatin immunoprecipitation analysis, we show that GATA-1 binds a highly restricted upstream region of the ≈70-kb GATA-2 domain, despite >80 GATA sites throughout the domain. GATA-2 also binds this region in the absence of GATA-1. Genetic complementation studies in GATA-1-null cells showed that GATA-1 rapidly displaces GATA-2, which is coupled to transcriptional repression. GATA-1 also displaces CREB-binding protein (CBP), despite the fact that GATA-1 binds CBP in other contexts. Repression correlates with reduced histone acetylation domain-wide, but not altered methylation of histone H3 at lysine 4. The GATA factor-binding region exhibited cell-type-specific enhancer activity in transient transfection assays. We propose that GATA-1 instigates GATA-2 repression by means of disruption of positive autoregulation, followed by establishment of a domain-wide repressive chromatin structure. Such a mechanism is predicted to be critical for the control of hematopoiesis.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A GATA-1-regulated microRNA locus essential for erythropoiesis

Louis C. Dore; Julio D. Amigo; Camila O. dos Santos; Zhe Zhang; Xiaowu Gai; John W. Tobias; Duonan Yu; Alyssa M. Klein; Christine M. Dorman; Weisheng Wu; Ross C. Hardison; Barry H. Paw; Mitchell J. Weiss

MicroRNAs (miRNAs) control tissue development, but their mechanism of regulation is not well understood. We used a gene complementation strategy combined with microarray screening to identify miRNAs involved in the formation of erythroid (red blood) cells. Two conserved miRNAs, miR 144 and miR 451, emerged as direct targets of the critical hematopoietic transcription factor GATA-1. In vivo, GATA-1 binds a distal upstream regulatory element to activate RNA polymerase II-mediated transcription of a single common precursor RNA (pri-miRNA) encoding both mature miRNAs. Zebrafish embryos depleted of miR 451 by using antisense morpholinos form erythroid precursors, but their development into mature circulating red blood cells is strongly and specifically impaired. These results reveal a miRNA locus that is required for erythropoiesis and uncover a new regulatory axis through which GATA-1 controls this process.


Molecular and Cellular Biology | 1999

CREB-Binding Protein Acetylates Hematopoietic Transcription Factor GATA-1 at Functionally Important Sites

Hsiao-Ling Hung; Jason Lau; Alexander Y. Kim; Mitchell J. Weiss; Gerd A. Blobel

ABSTRACT The transcription factor GATA-1 is a key regulator of erythroid-cell differentiation and survival. We have previously shown that the transcriptional cofactor CREB-binding protein (CBP) binds to the zinc finger domain of GATA-1, markedly stimulates the transcriptional activity of GATA-1, and is required for erythroid differentiation. Here we report that CBP, but not p/CAF, acetylates GATA-1 at two highly conserved lysine-rich motifs present at the C-terminal tails of both zinc fingers. Using [3H]acetate labelling experiments and anti-acetyl lysine immunoprecipitations, we show that GATA-1 is acetylated in vivo at the same sites acetylated by CBP in vitro. In addition, we show that CBP stimulates GATA-1 acetylation in vivo in an E1A-sensitive manner, thus establishing a correlation between acetylation and transcriptional activity of GATA-1. Acetylation in vitro did not alter the ability of GATA-1 to bind DNA, and mutations in either motif did not affect DNA binding of GATA-1 expressed in mammalian cells. Since certain functions of GATA-1 are revealed only in an erythroid environment, GATA-1 constructs were examined for their ability to trigger terminal differentiation when introduced into a GATA-1-deficient erythroid cell line. We found that mutations in either acetylation motif partially impaired the ability of GATA-1 to induce differentiation while mutations in both motifs abrogated it completely. Taken together, these data indicate that CBP is an important cofactor for GATA-1 and suggest a novel mechanism in which acetylation by CBP regulates GATA-1 activity in erythroid cells.


Molecular Cell | 2009

Insights into GATA-1-Mediated Gene Activation versus Repression via Genome-wide Chromatin Occupancy Analysis

Ming Yu; Laura Riva; Huafeng Xie; Yocheved Schindler; Tyler B. Moran; Yong Cheng; Duonan Yu; Ross C. Hardison; Mitchell J. Weiss; Stuart H. Orkin; Bradley E. Bernstein; Ernest Fraenkel; Alan Cantor

The transcription factor GATA-1 is required for terminal erythroid maturation and functions as an activator or repressor depending on gene context. Yet its in vivo site selectivity and ability to distinguish between activated versus repressed genes remain incompletely understood. In this study, we performed GATA-1 ChIP-seq in erythroid cells and compared it to GATA-1-induced gene expression changes. Bound and differentially expressed genes contain a greater number of GATA-binding motifs, a higher frequency of palindromic GATA sites, and closer occupancy to the transcriptional start site versus nondifferentially expressed genes. Moreover, we show that the transcription factor Zbtb7a occupies GATA-1-bound regions of some direct GATA-1 target genes, that the presence of SCL/TAL1 helps distinguish transcriptional activation versus repression, and that polycomb repressive complex 2 (PRC2) is involved in epigenetic silencing of a subset of GATA-1-repressed genes. These data provide insights into GATA-1-mediated gene regulation in vivo.


Nature | 2002

An abundant erythroid protein that stabilizes free α-haemoglobin

Anthony J. Kihm; Yi Kong; Wei Hong; J. Eric Russell; Susan Rouda; Kazuhiko Adachi; M. Celeste Simon; Gerd A. Blobel; Mitchell J. Weiss

The development of red blood cells (erythrocytes) is distinguished by high-level production of the oxygen carrier, haemoglobin A (HbA), a heterotetramer of α- and β-haemoglobin subunits. HbA synthesis is coordinated to minimize the accumulation of free subunits that form cytotoxic precipitates. Molecular chaperones that regulate globin subunit stability, folding or assembly have been proposed to exist but have never been identified. Here we identify a protein stabilizing free α-haemoglobin by using a screen for genes induced by the essential erythroid transcription factor GATA-1 (refs 4, 5). Alpha Haemoglobin Stabilizing Protein (AHSP) is an abundant, erythroid-specific protein that forms a stable complex with free α-haemoglobin but not with β-haemoglobin or haemoglobin A (α2β2). Moreover, AHSP specifically protects free α-haemoglobin from precipitation in solution and in live cells. AHSP-gene-ablated mice exhibit reticulocytosis and abnormal erythrocyte morphology with intracellular inclusion bodies that stain positively for denatured haemoglobins. Hence, AHSP is required for normal erythropoiesis, probably acting to block the deleterious effects of free α-haemoglobin precipitation. Accordingly, AHSP gene dosage is predicted to modulate pathological states of α-haemoglobin excess, such as β-thalassaemia.


Molecular and Cellular Biology | 2003

GATA-1-Mediated Proliferation Arrest during Erythroid Maturation

Marcin Rylski; John J. Welch; Ying-Yu Chen; Danielle L. Letting; J. Alan Diehl; Lewis A. Chodosh; Gerd A. Blobel; Mitchell J. Weiss

ABSTRACT Transcription factor GATA-1 is essential for erythroid and megakaryocytic maturation. GATA-1 mutations are associated with hematopoietic precursor proliferation and leukemogenesis, suggesting a role in cell cycle control. While numerous GATA-1 target genes specifying mature hematopoietic phenotypes have been identified, how GATA-1 regulates proliferation remains unknown. We used a complementation assay based on synchronous inducible rescue of GATA-1− erythroblasts to show that GATA-1 promotes both erythroid maturation and G1 cell cycle arrest. Molecular studies combined with microarray transcriptome analysis revealed an extensive GATA-1-regulated program of cell cycle control in which numerous growth inhibitors were upregulated and mitogenic genes were repressed. GATA-1 inhibited expression of cyclin-dependent kinase (Cdk) 6 and cyclin D2 and induced the Cdk inhibitors p18 INK4C and p27 Kip1 with associated inactivation of all G1 Cdks. These effects were dependent on GATA-1-mediated repression of the c-myc (Myc) proto-oncogene. GATA-1 inhibited Myc expression within 3 h, and chromatin immunoprecipitation studies indicated that GATA-1 occupies the Myc promoter in vivo, suggesting a direct mechanism for gene repression. Surprisingly, enforced expression of Myc prevented GATA-1-induced cell cycle arrest but had minimal effects on erythroid maturation. Our results illustrate how GATA-1, a lineage-determining transcription factor, coordinates proliferation arrest with cellular maturation through distinct, interrelated genetic programs.


Cell Stem Cell | 2012

Self-Renewing Endodermal Progenitor Lines Generated from Human Pluripotent Stem Cells

Xin Cheng; Lei Ying; Lin Lu; Aline M. Galvão; Jason A. Mills; Henry C. Lin; Darrell N. Kotton; Steven S. Shen; M. Cristina Nostro; John K. Choi; Mitchell J. Weiss; Deborah L. French; Paul Gadue

The use of human pluripotent stem cells for laboratory studies and cell-based therapies is hampered by their tumor-forming potential and limited ability to generate pure populations of differentiated cell types in vitro. To address these issues, we established endodermal progenitor (EP) cell lines from human embryonic and induced pluripotent stem cells. Optimized growth conditions were established that allow near unlimited (>10(16)) EP cell self-renewal in which they display a morphology and gene expression pattern characteristic of definitive endoderm. Upon manipulation of their culture conditions in vitro or transplantation into mice, clonally derived EP cells differentiate into numerous endodermal lineages, including monohormonal glucose-responsive pancreatic β-cells, hepatocytes, and intestinal epithelia. Importantly, EP cells are nontumorigenic in vivo. Thus, EP cells represent a powerful tool to study endoderm specification and offer a potentially safe source of endodermal-derived tissues for transplantation therapies.

Collaboration


Dive into the Mitchell J. Weiss's collaboration.

Top Co-Authors

Avatar

Stella T. Chou

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Ross C. Hardison

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Yu Yao

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Gerd A. Blobel

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Deborah L. French

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louis C. Dore

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

John K. Choi

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Paul Gadue

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge