Jason A. West
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jason A. West.
Nature | 2008
In-Hyun Park; Rui Zhao; Jason A. West; Akiko Yabuuchi; Hongguang Huo; Tan A. Ince; Paul H. Lerou; M. William Lensch; George Q. Daley
Pluripotency pertains to the cells of early embryos that can generate all of the tissues in the organism. Embryonic stem cells are embryo-derived cell lines that retain pluripotency and represent invaluable tools for research into the mechanisms of tissue formation. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Using these same factors, we have derived iPS cells from fetal, neonatal and adult human primary cells, including dermal fibroblasts isolated from a skin biopsy of a healthy research subject. Human iPS cells resemble embryonic stem cells in morphology and gene expression and in the capacity to form teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogramme human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture.
Cell | 2004
Jason M. Casolari; Christopher R. Brown; Suzanne Komili; Jason A. West; Haley Hieronymus; Pamela A. Silver
The association of genes with the nuclear pore complex (NPC) and nuclear transport factors has been implicated in transcriptional regulation. We therefore examined the association of components of the nuclear transport machinery including karyopherins, nucleoporins, and the Ran guanine-nucleotide exchange factor (RanGEF) with the Saccharomyces cerevisiae genome. We find that most nucleoporins and karyopherins preferentially associate with a subset of highly transcribed genes and with genes that possess Rap1 binding sites whereas the RanGEF preferentially associates with transcriptionally inactive genes. Consistent with coupling of transcription to the nuclear pore, we show that transcriptional activation of the GAL genes results in their association with nuclear pore proteins, relocation to the nuclear periphery, and loss of RanGEF association. Taken together, these results indicate that the organization of the genome is coupled via transcriptional state to the nuclear transport machinery.
Nature | 2009
Jason A. West; Srinivas R. Viswanathan; Akiko Yabuuchi; Kerianne Cunniff; Ayumu Takeuchi; In-Hyun Park; Julia E. Sero; Hao Zhu; Antonio R. Perez-Atayde; A. Lindsay Frazier; M. Azim Surani; George Q. Daley
The rarity and inaccessibility of the earliest primordial germ cells (PGCs) in the mouse embryo thwart efforts to investigate molecular mechanisms of germ-cell specification. stella (also called Dppa3) marks the rare founder population of the germ lineage. Here we differentiate mouse embryonic stem cells carrying a stella transgenic reporter into putative PGCs in vitro. The Stella+ cells possess a transcriptional profile similar to embryo-derived PGCs, and like their counterparts in vivo, lose imprints in a time-dependent manner. Using inhibitory RNAs to screen candidate genes for effects on the development of Stella+ cells in vitro, we discovered that Lin28, a negative regulator of let-7 microRNA processing, is essential for proper PGC development. Furthermore, we show that Blimp1 (also called Prdm1), a let-7 target and a master regulator of PGC specification, can rescue the effect of Lin28 deficiency during PGC development, thereby establishing a mechanism of action for Lin28 during PGC specification. Overexpression of Lin28 promotes formation of Stella+ cells in vitro and PGCs in chimaeric embryos, and is associated with human germ-cell tumours. The differentiation of putative PGCs from embryonic stem cells in vitro recapitulates the early stages of gamete development in vivo, and provides an accessible system for discovering novel genes involved in germ-cell development and malignancy.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Matthew D. Simon; Charlotte I. Wang; Peter V. Kharchenko; Jason A. West; Brad Chapman; Artyom A. Alekseyenko; Mark L. Borowsky; Mitzi I. Kuroda; Robert E. Kingston
Long noncoding RNAs (lncRNAs) have important regulatory roles and can function at the level of chromatin. To determine where lncRNAs bind to chromatin, we developed capture hybridization analysis of RNA targets (CHART), a hybridization-based technique that specifically enriches endogenous RNAs along with their targets from reversibly cross-linked chromatin extracts. CHART was used to enrich the DNA and protein targets of endogenous lncRNAs from flies and humans. This analysis was extended to genome-wide mapping of roX2, a well-studied ncRNA involved in dosage compensation in Drosophila. CHART revealed that roX2 binds at specific genomic sites that coincide with the binding sites of proteins from the male-specific lethal complex that affects dosage compensation. These results reveal the genomic targets of roX2 and demonstrate how CHART can be used to study RNAs in a manner analogous to chromatin immunoprecipitation for proteins.
Molecular Cell | 2014
Jason A. West; Christopher P. Davis; Hongjae Sunwoo; Matthew D. Simon; Ruslan I. Sadreyev; Peggy I. Wang; Michael Y. Tolstorukov; Robert E. Kingston
Mechanistic roles for many lncRNAs are poorly understood, in part because their direct interactions with genomic loci and proteins are difficult to assess. Using a method to purify endogenous RNAs and their associated factors, we mapped the genomic binding sites for two highly expressed human lncRNAs, NEAT1 and MALAT1. We show that NEAT1 and MALAT1 localize to hundreds of genomic sites in human cells, primarily over active genes. NEAT1 and MALAT1 exhibit colocalization to many of these loci, but display distinct gene body binding patterns at these sites, suggesting independent but complementary functions for these RNAs. We also identified numerous proteins enriched by both lncRNAs, supporting complementary binding and function, in addition to unique associated proteins. Transcriptional inhibition or stimulation alters localization of NEAT1 on active chromatin sites, implying that underlying DNA sequence does not target NEAT1 to chromatin, and that localization responds to cues involved in the transcription process.
Nature Protocols | 2006
Jason A. West; In-Hyun Park; George Q. Daley; Niels Geijsen
The demonstration of germ cell and haploid gamete development from embryonic stem cells (ESCs) in vitro has engendered a unique set of possibilities for the study of germ cell development and the associated epigenetic phenomenon. The process of embryoid body (EB) differentiation, like teratoma formation, signifies a spontaneous differentiation of ESCs into cells of all three germ layers, and it is from these differentiating aggregates of cells that putative primordial germ cells (PGCs) and more mature gametes can be identified and isolated. The differentiation system presented here requires the differentiation of murine ESCs into EBs and the subsequent isolation of PGCs as well as haploid male gametes from EBs at various stages of differentiation. It serves as a platform for studying the poorly understood process of germ cell allocation, imprint erasure and gamete formation, with 4–6 weeks being required to isolate PGCs as well as haploid cells.
Nature Communications | 2014
Jason A. West; April Cook; Burak H. Alver; Matthias Stadtfeld; Aimée M. Deaton; Peter J. Park; Michael Y. Tolstorukov; Robert E. Kingston
Chromatin structure determines DNA accessibility. We compare nucleosome occupancy in mouse and human embryonic stem cells (ESCs), induced-pluripotent stem cells (iPSCs) and differentiated cell types using MNase-seq. To address variability inherent in this technique, we developed a bioinformatic approach to identify regions of difference (RoD) in nucleosome occupancy between pluripotent and somatic cells. Surprisingly, most chromatin remains unchanged; a majority of rearrangements appear to affect a single nucleosome. RoDs are enriched at genes and regulatory elements, including enhancers associated with pluripotency and differentiation. RoDs co-localize with binding sites of key developmental regulators, including the reprogramming factors Klf4, Oct4/Sox2 and c-Myc. Nucleosomal landscapes in ESC enhancers are extensively altered, exhibiting lower nucleosome occupancy in pluripotent cells than in somatic cells. Most changes are reset during reprogramming. We conclude that changes in nucleosome occupancy are a hallmark of cell differentiation and reprogramming and likely identify regulatory regions essential for these processes.
Journal of Cell Biology | 2016
Jason A. West; Mari Mito; Satoshi Kurosaka; Toru Takumi; Chiharu Tanegashima; Takeshi Chujo; Kaori Yanaka; Robert E. Kingston; Tetsuro Hirose; Charles S. Bond; Archa H. Fox; Shinichi Nakagawa
Paraspeckles are nuclear bodies built on the long noncoding RNA Neat1. Using structural illumination microscopy, West et al. analyze the organization of paraspeckles at the submicron scale and show that paraspeckle proteins are arranged around bundles of Neat1, forming core-shell spheroidal structures dependent on the RNA binding protein Fus.
Journal of Biological Chemistry | 2015
Ienglam Lei; Jason A. West; Zhijiang Yan; Xiaolin Gao; Peng Fang; Jonathan H. Dennis; Leonid Gnatovskiy; Weidong Wang; Robert E. Kingston; Zhong Wang
Background: How BAF250a regulates nucleosome configuration in ES cells is not clear. Results: BAF250a regulates nucleosome occupancy and H3K27me3 to control gene expression during ES cell differentiation. Conclusion: BAF250a plays a key role in poised chromatin regulation. Significance: Understanding the mechanisms of chromatin remodeling in poised chromatin regulation provides epigenetic insights into ES cell differentiation. The unique chromatin signature of ES cells is fundamental to the pluripotency and differentiation of ES cells. One key feature is the poised chromatin state of master developmental genes that are transcriptionally repressed in ES cells but ready to be activated in response to differentiation signals. Poised chromatin in ES cells contains both H3 Lys-4 trimethylation (H3K4me3) and H3 Lys-27 trimethylation (H3K27me3) methylation, indicating activating and repressing potential. However, the contribution of non-covalent chromatin structure to the poised state is not well understood. To address whether remodeling of nucleosomes is important to the poised state, we characterized the function of BAF250a, a key regulatory subunit of the ES cell ATP-dependent Brahma-associated factor (BAF) chromatin remodeling complex (esBAF). Acute deletion of BAF250a disrupted the differentiation potential of ES cells by altering the expression timing of key developmental genes and pluripotent genes. Our genome-wide nucleosome and histone modification analyses indicated that the disruption of gene expression timing was largely due to changes of chromatin structures at poised genes, particularly those key developmental genes mediated by BAF250a. Specifically, BAF250a deletion caused a nucleosome occupancy increase at H3K4me3- and/or H3K27me3-associated promoters. Moreover, H3K27me3 levels and the number of bivalent promoter genes were reduced in BAF250a KO ES cells. We revealed that BAF250a ablation led to elevated Brg1 but reduced Suz12 recruitment at nucleosome occupancy-increased regions, indicating an unexpected and complicated role of BAF250a in regulating esBAF and Polycomb repressive complex (PRC) activities. Together, our studies identified that BAF250a mediates esBAF and PRC functions to establish the poised chromatin configuration in ES cells, which is essential for the proper differentiation of ES cells.
Methods of Molecular Biology | 2015
Christopher P. Davis; Jason A. West
Identification of genomic binding sites and proteins associated with noncoding RNAs will lead to more complete mechanistic characterization of the regulatory activities of noncoding RNAs. Capture hybridization analysis of RNA targets (CHART) is a powerful technique wherein specific RNA molecules are isolated from cross-linked nuclear extracts using complementary, biotinylated capture oligonucleotides, allowing subsequent identification of genomic DNA and proteins cross-linked to the RNA of interest. Here, we describe the procedure for CHART and list strategies to optimize nuclear extract preparation, capture oligonucleotide design, and isolation of nucleic acids and proteins enriched through CHART.