Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason Abernathy is active.

Publication


Featured researches published by Jason Abernathy.


Journal of Applied Microbiology | 2004

Genetic fingerprinting of Flavobacterium columnare isolates from cultured fish

Cova R. Arias; Thomas L. Welker; Craig A. Shoemaker; Jason Abernathy; Phillip H. Klesius

Aims:  To evaluate the intraspecific diversity of the fish pathogen Flavobacterium columnare


Genetics | 2009

Construction of Genetic Linkage Maps and Comparative Genome Analysis of Catfish Using Gene-associated Markers

Huseyin Kucuktas; Shaolin Wang; Ping Li; Chongbo He; Peng Xu; Zhenxia Sha; Hong Liu; Yanliang Jiang; Puttharat Baoprasertkul; Benjaporn Somridhivej; Yaping Wang; Jason Abernathy; Ximing Guo; Lei Liu; William M. Muir; Zhanjiang Liu

A genetic linkage map of the channel catfish genome (N = 29) was constructed using EST-based microsatellite and single nucleotide polymorphism (SNP) markers in an interspecific reference family. A total of 413 microsatellites and 125 SNP markers were polymorphic in the reference family. Linkage analysis using JoinMap 4.0 allowed mapping of 331 markers (259 microsatellites and 72 SNPs) to 29 linkage groups. Each linkage group contained 3–18 markers. The largest linkage group contained 18 markers and spanned 131.2 cM, while the smallest linkage group contained 14 markers and spanned only 7.9 cM. The linkage map covered a genetic distance of 1811 cM with an average marker interval of 6.0 cM. Sex-specific maps were also constructed; the recombination rate for females was 1.6 times higher than that for males. Putative conserved syntenies between catfish and zebrafish, medaka, and Tetraodon were established, but the overall levels of genome rearrangements were high among the teleost genomes. This study represents a first-generation linkage map constructed by using EST-derived microsatellites and SNPs, laying a framework for large-scale comparative genome analysis in catfish. The conserved syntenies identified here between the catfish and the three model fish species should facilitate structural genome analysis and evolutionary studies, but more importantly should facilitate functional inference of catfish genes. Given that determination of gene functions is difficult in nonmodel species such as catfish, functional genome analysis will have to rely heavily on the establishment of orthologies from model species.


Genome Biology | 2010

Assembly of 500,000 inter-specific catfish expressed sequence tags and large scale gene-associated marker development for whole genome association studies

Shaolin Wang; Eric Peatman; Jason Abernathy; Geoff Waldbieser; Erika Lindquist; Paul G. Richardson; Susan Lucas; Mei Wang; Ping Li; Jyothi Thimmapuram; Lei Liu; Deepika Vullaganti; Huseyin Kucuktas; Chris Murdock; Brian C. Small; Melanie Wilson; Hong Liu; Yanliang Jiang; Yoona Lee; Fei Chen; Jianguo Lu; Wenqi Wang; Peng Xu; Benjaporn Somridhivej; Puttharat Baoprasertkul; Jonas P. Quilang; Zhenxia Sha; Baolong Bao; Yaping Wang; Qun Wang

BackgroundThrough the Community Sequencing Program, a catfish EST sequencing project was carried out through a collaboration between the catfish research community and the Department of Energys Joint Genome Institute. Prior to this project, only a limited EST resource from catfish was available for the purpose of SNP identification.ResultsA total of 438,321 quality ESTs were generated from 8 channel catfish (Ictalurus punctatus) and 4 blue catfish (Ictalurus furcatus) libraries, bringing the number of catfish ESTs to nearly 500,000. Assembly of all catfish ESTs resulted in 45,306 contigs and 66,272 singletons. Over 35% of the unique sequences had significant similarities to known genes, allowing the identification of 14,776 unique genes in catfish. Over 300,000 putative SNPs have been identified, of which approximately 48,000 are high-quality SNPs identified from contigs with at least four sequences and the minor allele presence of at least two sequences in the contig. The EST resource should be valuable for identification of microsatellites, genome annotation, large-scale expression analysis, and comparative genome analysis.ConclusionsThis project generated a large EST resource for catfish that captured the majority of the catfish transcriptome. The parallel analysis of ESTs from two closely related Ictalurid catfishes should also provide powerful means for the evaluation of ancient and recent gene duplications, and for the development of high-density microarrays in catfish. The inter- and intra-specific SNPs identified from all catfish EST dataset assembly will greatly benefit the catfish introgression breeding program and whole genome association studies.


Developmental and Comparative Immunology | 2009

Nod-like subfamily of the nucleotide-binding domain and leucine-rich repeat containing family receptors and their expression in channel catfish.

Zhenxia Sha; Jason Abernathy; Shaolin Wang; Ping Li; Huseyin Kucuktas; Hong Liu; Eric Peatman; Zhanjiang Liu

The NLRs (nucleotide-binding domain and leucine-rich repeat containing family receptors) are a recently identified family of pattern recognition receptors in vertebrates. Several subfamilies of NLRs have been characterized in human, mouse, and zebrafish, but studies of NLRs in other species, especially teleost species, have been lacking. Here we report characterization of five NLRs from channel catfish: NOD1, NOD2, NLRC3, NLRC5, and NLRX1. Structural analysis indicated that the genes were organized in a similar fashion as in the mammals and in zebrafish. Phylogenetic analysis suggested that they were orthologous to the NOD-like subfamily of NLRs. All five NOD-like genes exist as a single copy gene in the catfish genome. Hybridization of gene-specific probes allowed mapping of three NLR genes to the catfish physical map, laying a foundation for genome characterization and for establishing orthologies with NLR genes from other species. These genes are widely expressed in various tissues and leukocyte cell lines. While the majority of the NLR genes appeared to be constitutively expressed, NOD1 was induced after infection with a bacterial pathogen, Edwardsiella ictaluri, the causative agent of enteric septicemia of catfish (ESC), suggesting its involvement in immunity against the intracellular pathogen.


BMC Genomics | 2007

Generation and analysis of ESTs from the eastern oyster, Crassostrea virginica Gmelin and identification of microsatellite and SNP markers

Jonas P. Quilang; Shaolin Wang; Ping Li; Jason Abernathy; Eric Peatman; Yongping Wang; Lingling Wang; Yaohua Shi; Richard K. Wallace; Ximing Guo; Zhanjiang Liu

BackgroundThe eastern oyster, Crassostrea virginica (Gmelin 1791), is an economically important species cultured in many areas in North America. It is also ecologically important because of the impact of its filter feeding behaviour on water quality. Populations of C. virginica have been threatened by overfishing, habitat degradation, and diseases. Through genome research, strategies are being developed to reverse its population decline. However, large-scale expressed sequence tag (EST) resources have been lacking for this species. Efficient generation of EST resources from this species has been hindered by a high redundancy of transcripts. The objectives of this study were to construct a normalized cDNA library for efficient EST analysis, to generate thousands of ESTs, and to analyze the ESTs for microsatellites and potential single nucleotide polymorphisms (SNPs).ResultsA normalized and subtracted C. virginica cDNA library was constructed from pooled RNA isolated from hemocytes, mantle, gill, gonad and digestive tract, muscle, and a whole juvenile oyster. A total of 6,528 clones were sequenced from this library generating 5,542 high-quality EST sequences. Cluster analysis indicated the presence of 635 contigs and 4,053 singletons, generating a total of 4,688 unique sequences. About 46% (2,174) of the unique ESTs had significant hits (E-value ≤ 1e-05) to the non-redundant protein database; 1,104 of which were annotated using Gene Ontology (GO) terms. A total of 35 microsatellites were identified from the ESTs, with 18 having sufficient flanking sequences for primer design. A total of 6,533 putative SNPs were also identified using all existing and the newly generated EST resources of the eastern oysters.ConclusionA high quality normalized cDNA library was constructed. A total of 5,542 ESTs were generated representing 4,688 unique sequences. Putative microsatellite and SNP markers were identified. These genome resources provide the material basis for future microarray development, marker validation, and genetic linkage and QTL analysis.


PLOS ONE | 2010

Identification and Characterization of Full-Length cDNAs in Channel Catfish (Ictalurus punctatus) and Blue Catfish (Ictalurus furcatus)

Fei Chen; Yoona Lee; Yanliang Jiang; Shaolin Wang; Eric Peatman; Jason Abernathy; Hong Liu; Shikai Liu; Huseyin Kucuktas; Caihuan Ke; Zhanjiang Liu

Background Genome annotation projects, gene functional studies, and phylogenetic analyses for a given organism all greatly benefit from access to a validated full-length cDNA resource. While increasingly common in model species, full-length cDNA resources in aquaculture species are scarce. Methodology and Principal Findings Through in silico analysis of catfish (Ictalurus spp.) ESTs, a total of 10,037 channel catfish and 7,382 blue catfish cDNA clones were identified as potentially encoding full-length cDNAs. Of this set, a total of 1,169 channel catfish and 933 blue catfish full-length cDNA clones were selected for re-sequencing to provide additional coverage and ensure sequence accuracy. A total of 1,745 unique gene transcripts were identified from the full-length cDNA set, including 1,064 gene transcripts from channel catfish and 681gene transcripts from blue catfish, with 416 transcripts shared between the two closely related species. Full-length sequence characteristics (ortholog conservation, UTR length, Kozak sequence, and conserved motifs) of the channel and blue catfish were examined in detail. Comparison of gene ontology composition between full-length cDNAs and all catfish ESTs revealed that the full-length cDNA set is representative of the gene diversity encoded in the catfish transcriptome. Conclusions This study describes the first catfish full-length cDNA set constructed from several cDNA libraries. The catfish full-length cDNA sequences, and data gleaned from sequence characteristics analysis, will be a valuable resource for ongoing catfish whole-genome sequencing and future gene-based studies of function and evolution in teleost fishes.


Fish & Shellfish Immunology | 2010

Structure and expression of transferrin gene of channel catfish, Ictalurus punctatus.

Hong Liu; Tomokazu Takano; Jason Abernathy; Shaolin Wang; Zhenxia Sha; Yanliang Jiang; Jeffery S. Terhune; Huseyin Kucuktas; Eric Peatman; Zhanjiang Liu

Transferrin is important in iron metabolism and has been reported to be involved in disease defence responses after bacterial infection. In this study, we identified, sequenced, and characterized the transferrin gene from channel catfish, Ictalurus punctatus. The catfish transferrin gene was similar to those of other vertebrate species with 17 exons and 16 introns. Sequence analysis indicated the presence of the two duplicated lobes, each containing two sub-domains separated by a cleft harboring the iron-binding site, suggesting their structural conservation. The channel catfish transferrin cDNA encodes 679 amino acids with 42-56% similarity to known transferrin genes from various species. Southern blot analysis suggested the presence of two copies of the transferrin gene in the catfish genome, perhaps arranged in a tandem fashion. The catfish transferrin gene was mapped to a catfish BAC-based physical map. The catfish transferrin gene was highly expressed in the liver, but expression was low in most other tested tissues. Transferrin expression was significantly up-regulated after infection with Edwardsiella ictaluri, the causative agent of enteric septicemia of catfish. Such induction was also found with co-injection of iron-dextran and E. ictaluri, while transferrin expression was not significantly induced with the injection of iron-dextran alone.


BMC Genomics | 2009

Comparative analysis of catfish BAC end sequences with the zebrafish genome

Hong Liu; Yanliang Jiang; Shaolin Wang; Parichart Ninwichian; Benjaporn Somridhivej; Peng Xu; Jason Abernathy; Huseyin Kucuktas; Zhanjiang Liu

BackgroundComparative mapping is a powerful tool to transfer genomic information from sequenced genomes to closely related species for which whole genome sequence data are not yet available. However, such an approach is still very limited in catfish, the most important aquaculture species in the United States. This project was initiated to generate additional BAC end sequences and demonstrate their applications in comparative mapping in catfish.ResultsWe reported the generation of 43,000 BAC end sequences and their applications for comparative genome analysis in catfish. Using these and the additional 20,000 existing BAC end sequences as a resource along with linkage mapping and existing physical map, conserved syntenic regions were identified between the catfish and zebrafish genomes. A total of 10,943 catfish BAC end sequences (17.3%) had significant BLAST hits to the zebrafish genome (cutoff value ≤ e-5), of which 3,221 were unique gene hits, providing a platform for comparative mapping based on locations of these genes in catfish and zebrafish. Genetic linkage mapping of microsatellites associated with contigs allowed identification of large conserved genomic segments and construction of super scaffolds.ConclusionBAC end sequences and their associated polymorphic markers are great resources for comparative genome analysis in catfish. Highly conserved chromosomal regions were identified to exist between catfish and zebrafish. However, it appears that the level of conservation at local genomic regions are high while a high level of chromosomal shuffling and rearrangements exist between catfish and zebrafish genomes. Orthologous regions established through comparative analysis should facilitate both structural and functional genome analysis in catfish.


Molecular Genetics and Genomics | 2010

Alternative splicing in teleost fish genomes: same-species and cross-species analysis and comparisons.

Jianguo Lu; Eric Peatman; Wenqi Wang; Qing Yang; Jason Abernathy; Shaolin Wang; Huseyin Kucuktas; Zhanjiang Liu

Alternative splicing (AS) is a mechanism by which the coding diversity of the genome can be greatly increased. Rates of AS are known to vary according to the complexity of eukaryotic species potentially explaining the tremendous phenotypic diversity among species with similar numbers of coding genes. Little is known, however, about the nature or rate of AS in teleost fish. Here, we report the characteristics of AS in teleost fish and classification and frequency of five canonical AS types. We conducted both same-species and cross-species analysis utilizing the Genome Mapping and Alignment Program (GMAP) and an AS pipeline (ASpipe) to study AS in four genome-enabled species (Danio rerio, Oryzias latipes, Gasterosteus aculeatus, and Takifugu rubripes) and one species lacking a complete genome sequence, Ictalurus punctatus. AS frequency was lowest in the highly duplicated genome of zebrafish (17% of mapped genes). The compact genome of the pufferfish showed the highest occurrence of AS (~43% of mapped genes). An inverse correlation between AS frequency and genome size was consistent across all analyzed species. Cross-species comparisons utilizing zebrafish as the reference genome allowed the identification of additional putative AS genes not revealed by zebrafish transcripts. Approximately, 50% of AS genes identified by same-species comparisons were shared among two or more species. A searchable website, the Teleost Alternative Splicing Database, was created to allow easy identification and visualization of AS transcripts in the studied teleost genomes. Our results and associated database should further our understanding of alternative splicing as an important functional and evolutionary mechanism in the genomes of teleost fish.


G3: Genes, Genomes, Genetics | 2012

Second-Generation Genetic Linkage Map of Catfish and Its Integration with the BAC-Based Physical Map

Parichart Ninwichian; Eric Peatman; Hong Liu; Huseyin Kucuktas; Benjaporn Somridhivej; Shikai Liu; Ping Li; Yanliang Jiang; Zhenxia Sha; Ludmilla Kaltenboeck; Jason Abernathy; Wenqi Wang; Fei Chen; Yoona Lee; Lilian Wong; Shaolin Wang; Jianguo Lu; Zhanjiang Liu

Construction of high-density genetic linkage maps is crucially important for quantitative trait loci (QTL) studies, and they are more useful when integrated with physical maps. Such integrated maps are valuable genome resources for fine mapping of QTL, comparative genomics, and accurate and efficient whole-genome assembly. Previously, we established both linkage maps and a physical map for channel catfish, Ictalurus punctatus, the dominant aquaculture species in the United States. Here we added 2030 BAC end sequence (BES)-derived microsatellites from 1481 physical map contigs, as well as markers from singleton BES, ESTs, anonymous microsatellites, and SNPs, to construct a second-generation linkage map. Average marker density across the 29 linkage groups reached 1.4 cM/marker. The increased marker density highlighted variations in recombination rates within and among catfish chromosomes. This work effectively anchored 44.8% of the catfish BAC physical map contigs, covering ∼52.8% of the genome. The genome size was estimated to be 2546 cM on the linkage map, and the calculated physical distance per centimorgan was 393 Kb. This integrated map should enable comparative studies with teleost model species as well as provide a framework for ordering and assembling whole-genome scaffolds.

Collaboration


Dive into the Jason Abernathy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaolin Wang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Phillip H. Klesius

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

De-Hai Xu

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanliang Jiang

Chinese Academy of Fishery Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhenxia Sha

Chinese Academy of Fishery Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge