Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhanjiang Liu is active.

Publication


Featured researches published by Zhanjiang Liu.


Molecular Genetics and Genomics | 2018

Identification of novel genes significantly affecting growth in catfish through GWAS analysis

Ning Li; Tao Zhou; Xin Geng; Yulin Jin; Xiaozhu Wang; Shikai Liu; Xiaoyan Xu; Dongya Gao; Qi Li; Zhanjiang Liu

Growth is the most important economic trait in aquaculture. Improvements in growth-related traits can enhance production, reduce costs and time to produce market-size fish. Catfish is the major aquaculture species in the United States, accounting for 65% of the US finfish production. However, the genes underlying growth traits in catfish were not well studied. Currently, the majority of the US catfish industry uses hybrid catfish derived from channel catfish female mated with blue catfish male. Interestingly, channel catfish and blue catfish exhibit differences in growth-related traits, and therefore the backcross progenies provide an efficient system for QTL analysis. In this study, we conducted a genome-wide association study for catfish body weight using the 250xa0K SNP array with 556 backcross progenies generated from backcross of male F1 hybrid (female channel catfishxa0×xa0male blue catfish) with female channel catfish. A genomic region of approximately 1xa0Mb on linkage group 5 was found to be significantly associated with body weight. In addition, four suggestively associated QTL regions were identified on linkage groups 1, 2, 23 and 24. Most candidate genes in the associated regions are known to be involved in muscle growth and bone development, some of which were reported to be associated with obesity in humans and pigs, suggesting that the functions of these genes may be evolutionarily conserved in controlling growth. Additional fine mapping or functional studies should allow identification of the causal genes for fast growth in catfish, and elucidation of molecular mechanisms of regulation of growth in fish.


Molecular Genetics and Genomics | 2018

GWAS analysis using interspecific backcross progenies reveals superior blue catfish alleles responsible for strong resistance against enteric septicemia of catfish

Suxu Tan; Tao Zhou; Wenwen Wang; Yulin Jin; Xiaozhu Wang; Xin Geng; Jian Luo; Zihao Yuan; Yujia Yang; Huitong Shi; Dongya Gao; Rex A. Dunham; Zhanjiang Liu

Infectious diseases pose significant threats to the catfish industry. Enteric septicemia of catfish (ESC) caused by Edwardsiella ictaluri is the most devastating disease for catfish aquaculture, causing huge economic losses annually. Channel catfish and blue catfish exhibit great contrast in resistance against ESC, with channel catfish being highly susceptible and blue catfish being highly resistant. As such, the interspecific backcross progenies provide an ideal system for the identification of quantitative trait locus (QTL). We previously reported one significant QTL on linkage group (LG) 1 using the third-generation backcrosses, but the number of founders used to make the second- and third-generation backcross progenies was very small. Although the third-generation backcross progenies provided a greater power for fine mapping than the first-generation backcrosses, some major QTL for disease resistance may have been missing due to the small numbers of founders used to produce the higher generation backcrosses. In this study, we performed a genome-wide association study using first-generation backcrosses with the catfish 690xa0K SNP arrays to identify additional ESC disease resistance QTL, especially those at the species level. Two genomic regions on LG1 and LG23 were determined to be significantly associated with ESC resistance as revealed by a mixed linear model and family-based association test. Examination of the resistance alleles indicated their origin from blue catfish, indicating that at least two major disease resistance loci exist among blue catfish populations. Upon further validation, markers linked with major ESC disease resistance QTL should be useful for marker-assisted introgression, allowing development of highly ESC resistant breeds of catfish.


Physiological Genomics | 2018

Comparative transcriptome analysis reveals conserved branching morphogenesis related genes involved in chamber formation of catfish swimbladder

Yujia Yang; Qiang Fu; Yang Liu; Xiaozhu Wang; Rex A. Dunham; Shikai Liu; Lisui Bao; Qifan Zeng; Tao Zhou; Ning Li; Zhenkui Qin; Chen Jiang; Dongya Gao; Zhanjiang Liu

The swimbladder is an internal gas-filled organ in teleosts. Its major function is to regulate buoyancy. The swimbladder exhibits great variation in size, shape, and number of compartments or chambers among teleosts. However, genomic control of swimbladder variation is unknown. Channel catfish ( Ictalurus punctatus), blue catfish ( Ictalurus furcatus), and their F1 hybrids of female channel catfish × male blue catfish (Cu2009×u2009B hybrid catfish) provide a good model in which to investigate the swimbladder morphology, because channel catfish possess a single-chambered swimbladder, whereas blue catfish possess a bichambered swimbladder; Cu2009×u2009B hybrid catfish possess a bichambered swimbladder but with a significantly reduced posterior chamber. Here we determined the transcriptional profiles of swimbladder from channel catfish, blue catfish, and Cu2009×u2009B hybrid catfish. We examined their transcriptomes at both the fingerling and adult stages. Through comparative transcriptome analysis, ~4,000 differentially expressed genes (DEGs) were identified. Among these DEGs, members of the Wnt signaling pathway ( wnt1, wnt2, nfatc1, rac2), Hedgehog signaling pathway ( shh), and growth factors ( fgf10, igf-1) were identified. As these genes were known to be important for branching morphogenesis of mammalian lung and of mammary glands, their association with budding of the posterior chamber primordium and progressive development of bichambered swimbladder in fish suggest that these branching morphogenesis-related genes and their functions in branching are evolutionarily conserved across a broad spectrum of species.


Molecular Genetics and Genomics | 2018

Genome-wide association analysis of intra-specific QTL associated with the resistance for enteric septicemia of catfish

Huitong Shi; Tao Zhou; Xiaozhu Wang; Yujia Yang; Chenglong Wu; Shikai Liu; Lisui Bao; Ning Li; Zihao Yuan; Yulin Jin; Suxu Tan; Wenwen Wang; Xiaoxiao Zhong; Guyu Qin; Xin Geng; Dongya Gao; Rex A. Dunham; Zhanjiang Liu

Disease resistance is one of the most important traits for aquaculture industry. For catfish industry, enteric septicemia of catfish (ESC), caused by the bacterial pathogen Edwardsiella ictaluri, is the most severe disease, causing enormous economic losses every year. In this study, we used three channel catfish families with 900 individuals (300 fish per family) and the 690K catfish SNP array, and conducted a genome-wide association study to detect the quantitative trait loci (QTL) associated with ESC resistance. Three significant QTL, with two of located on LG1 and one on LG26, and three suggestive QTL located on LG1, LG3, and LG21, respectively, were identified to be associated with ESC resistance. With a well-assembled- and -annotated reference genome sequence, genes around the involved QTL regions were identified. Among these genes, 37 genes had known functions in immunity, which may be involved in ESC resistance. Notably, nlrc3 and nlrp12 identified here were also found in QTL regions of ESC resistance in the channel catfishu2009×u2009blue catfish interspecific hybrid system, suggesting this QTL was operating within both intra-specific channel catfish populations and interspecific hybrid backcross populations. Many of the genes of the Class I MHC pathway, for mediated antigen processing and presentation, were found in the QTL regions. The positional correlation found in this study and the expressional correlation found in previous studies indicated that Class I MHC pathway was significantly associated with ESC resistance. This study validated one QTL previously identified using the second and fourth generation of the interspecific hybrid backcross progenies, and identified five additional QTL among channel catfish families. Taken together, it appears that there are only a few major QTL for ESC disease resistance, making marker-assisted selection an effective approach for genetic improvements of ESC resistance.


Developmental and Comparative Immunology | 2018

JAK and STAT members in channel catfish: Identification, phylogenetic analysis and expression profiling after Edwardsiella ictaluri infection

Yulin Jin; Tao Zhou; Ning Li; Shikai Liu; Xiaoyan Xu; Ying Pan; Suxu Tan; Huitong Shi; Yujia Yang; Zihao Yuan; Wenwen Wang; Jian Luo; Dongya Gao; Rex A. Dunham; Zhanjiang Liu

&NA; The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway is one of the main pleiotropic cascades used to transmit information from extracellular receptors to the nucleus, which results in DNA transcription and expression of genes involved in immunity, proliferation, differentiation, migration, apoptosis, and cell survival. Members of JAK family and STAT family have been extensively studied in different mammalian species because of their important roles in innate and adaptive immune responses. However, they have not been systematically studied among teleost fish species. In this study, five JAK family members and eight STAT family members were identified and characterized from channel catfish. Phylogenetic analysis was conducted to properly annotate these genes. Syntenic analysis was also conducted to establish orthology, and confirm the results from phylogenetic analysis. Compared to mammals, more members of the JAK and STAT family were identified in channel catfish genome. Expression of JAK and STAT family members was detected in healthy catfish tissues, but was induced in gill, liver, and intestine after bacterial challenge. Notably, the significant upregulation of STAT1b gene in catfish liver, gill and intestine after Edwardsiella ictaluri infection supported the notion that high STAT1 expression are involved in defense against pathogens. Collectively, the increased expression of JAK and STAT members in tested tissues suggested their crucial function in defending the host against pathogen invasion. HighlightsFive JAK genes and eight STAT genes were identified in channel catfish.Expression of JAK and STAT genes were detected in healthy catfish tissues.Expression of JAK and STAT genes were induced in gill, liver, and intestine after E. ictaluri infection.Expression of STAT1b gene was significantly upregulated in gill, liver and intestine after E. ictaluri infection.


Physiological Genomics | 2018

Comparative transcriptome analysis of the swimbladder reveals expression signatures in response to low oxygen stress in channel catfish, Ictalurus punctatus.

Yujia Yang; Qiang Fu; Xiaozhu Wang; Yang Liu; Qifan Zeng; Yun Li; Sen Gao; Lisui Bao; Shikai Liu; Dongya Gao; Rex A. Dunham; Zhanjiang Liu

Channel catfish is the leading aquaculture species in the US, and one of the reasons for its application in aquaculture is its relatively high tolerance against hypoxia. However, hypoxia can still cause huge economic losses to the catfish industry. Studies on hypoxia tolerance, therefore, are important for aquaculture. Fish swimbladder has been considered as an accessory respiration organ surrounded by a dense capillary countercurrent exchange system. In this regard, we conducted RNA-Seq analysis with swimbladder samples of catfish under hypoxic and normal conditions to determine if swimbladder was responsive to low oxygen treatment and to reveal genes, their expression patterns, and pathways involved in hypoxia responses in catfish. A total of 155 differentially expressed genes (DEGs) were identified from swimbladder of adult catfish, whereas a total of 2,127 DEGs were identified from swimbladder of fingerling catfish under hypoxic condition as compared with untreated controls. Subsequent pathway analysis revealed that many DEGs under hypoxia were involved in HIF signaling pathway ( nos2, eno2, camk2d2, prkcb, cdkn1a, eno1, and tfrc), MAPK signaling pathway (voltage-dependent calcium channel subunit genes), PI3K/Akt/mTOR signaling pathway ( itga6, g6pc, and cdkn1a), Ras signaling pathway ( efna3 and ksr2), and signaling by VEGF ( fn1, wasf3, and hspb1) in catfish swimbladder. This study provided insights into regulation of gene expression and their involved gene pathways in catfish swimbladder in response to low oxygen stresses.


PLOS ONE | 2018

The annotation of repetitive elements in the genome of channel catfish (Ictalurus punctatus)

Zihao Yuan; Tao Zhou; Lisui Bao; Shikai Liu; Huitong Shi; Yujia Yang; Dongya Gao; Rex A. Dunham; Geoff Waldbieser; Zhanjiang Liu

Channel catfish (Ictalurus punctatus) is a highly adaptive species and has been used as a research model for comparative immunology, physiology, and toxicology among ectothermic vertebrates. It is also economically important for aquaculture. As such, its reference genome was generated and annotated with protein coding genes. However, the repetitive elements in the catfish genome are less well understood. In this study, over 417.8 Megabase (MB) of repetitive elements were identified and characterized in the channel catfish genome. Among them, the DNA/TcMar-Tc1 transposons are the most abundant type, making up ~20% of the total repetitive elements, followed by the microsatellites (14%). The prevalence of repetitive elements, especially the mobile elements, may have provided a driving force for the evolution of the catfish genome. A number of catfish-specific repetitive elements were identified including the previously reported Xba elements whose divergence rate was relatively low, slower than that in untranslated regions of genes but faster than the protein coding sequences, suggesting its evolutionary restrictions.


Comparative Biochemistry and Physiology Part D: Genomics and Proteomics | 2018

Transcriptome analysis reveals enrichment of genes associated with auditory system in swimbladder of channel catfish

Yujia Yang; Xiaozhu Wang; Yang Liu; Qiang Fu; Changxu Tian; Chenglong Wu; Huitong Shi; Zihao Yuan; Suxu Tan; Shikai Liu; Dongya Gao; Rex A. Dunham; Zhanjiang Liu

In aquatic organisms, hearing is an important sense for acoustic communications and detection of sound-emitting predators and prey. Channel catfish is a dominant aquaculture species in the United States. As channel catfish can hear sounds of relatively high frequency, it serves as a good model for study auditory mechanisms. In catfishes, Weberian ossicles connect the swimbladder to the inner ear to transfer the forced vibrations and improve hearing ability. In this study, we examined the transcriptional profiles of channel catfish swimbladder and other four tissues (gill, liver, skin, and intestine). We identified a total of 1777 genes that exhibited preferential expression pattern in swimbladder of channel catfish. Based on Gene Ontology enrichment analysis, many of swimbladder-enriched genes were categorized into sensory perception of sound, auditory behavior, response to auditory stimulus, or detection of mechanical stimulus involved in sensory perception of sound, such as coch, kcnq4, sptbn1, sptbn4, dnm1, ush2a, and col11a1. Six signaling pathways associated with hearing (Glutamatergic synapse, GABAergic synapse pathways, Axon guidance, cAMP signaling pathway, Ionotropic glutamate receptor pathway, and Metabotropic glutamate receptor group III pathway) were over-represented in KEGG and PANTHER databases. Protein interaction prediction revealed an interactive relationship among the swimbladder-enriched genes and genes involved in sensory perception of sound. This study identified a set of genes and signaling pathways associated with auditory system in the swimbladder of channel catfish and provide resources for further study on the biological and physiological roles in catfish swimbladder.


BMC Genomics | 2018

Comparative genome analysis of 52 fish species suggests differential associations of repetitive elements with their living aquatic environments

Zihao Yuan; Shikai Liu; Tao Zhou; Changxu Tian; Lisui Bao; Rex A. Dunham; Zhanjiang Liu

BackgroundRepetitive elements make up significant proportions of genomes. However, their roles in evolution remain largely unknown. To provide insights into the roles of repetitive elements in fish genomes, we conducted a comparative analysis of repetitive elements of 52 fish species in 22 orders in relation to their living aquatic environments.ResultsThe proportions of repetitive elements in various genomes were found to be positively correlated with genome sizes, with a few exceptions. More importantly, there appeared to be specific enrichment between some repetitive element categories with species habitat. Specifically, class II transposons appear to be more abundant in freshwater bony fish than in marine bony fish when phylogenetic relationship is not considered. In contrast, marine bony fish harbor more tandem repeats than freshwater species. In addition, class I transposons appear to be more abundant in primitive species such as cartilaginous fish and lamprey than in bony fish.ConclusionsThe enriched association of specific categories of repetitive elements with fish habitats suggests the importance of repetitive elements in genome evolution and their potential roles in fish adaptation to their living environments. However, due to the restriction of the limited sequenced species, further analysis needs to be done to alleviate the phylogenetic biases.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Chemokine C-C motif ligand 33 is a key regulator of teleost fish barbel development

Tao Zhou; Ning Li; Yulin Jin; Qifan Zeng; Wendy Tri Prabowo; Yang Liu; Changxu Tian; Lisui Bao; Shikai Liu; Zihao Yuan; Qiang Fu; Sen Gao; Dongya Gao; Rex A. Dunham; Neil H. Shubin; Zhanjiang Liu

Significance Barbels are important sensory organs for food seeking of teleosts, reptiles, and amphibians, but the molecular basis of barbel development is unknown. Here, we exploited the barbel-less bottlenose catfish as a natural model to determine the genomic basis for barbel development. Through a series of comparative analyses using genome and transcriptome datasets, a chemokine gene, ccl33, was identified as a key regulator of barbel development. Its knockout in zebrafish led to the loss of barbels, further supporting the roles of ccl33 for barbel development. These findings demand functional studies of chemokines as key developmental, as well as immune, regulators. Barbels are important sensory organs in teleosts, reptiles, and amphibians. The majority of ∼4,000 catfish species, such as the channel catfish (Ictalurus punctatus), possess abundant whisker-like barbels. However, barbel-less catfish, such as the bottlenose catfish (Ageneiosus marmoratus), do exist. Barbeled catfish and barbel-less catfish are ideal natural models for determination of the genomic basis for barbel development. In this work, we generated and annotated the genome sequences of the bottlenose catfish, conducted comparative and subtractive analyses using genome and transcriptome datasets, and identified differentially expressed genes during barbel regeneration. Here, we report that chemokine C-C motif ligand 33 (ccl33), as a key regulator of barbel development and regeneration. It is present in barbeled fish but absent in barbel-less fish. The ccl33 genes are differentially expressed during barbel regeneration in a timing concordant with the timing of barbel regeneration. Knockout of ccl33 genes in the zebrafish (Danio rerio) resulted in various phenotypes, including complete loss of barbels, reduced barbel sizes, and curly barbels, suggesting that ccl33 is a key regulator of barbel development. Expression analysis indicated that paralogs of the ccl33 gene have both shared and specific expression patterns, most notably expressed highly in various parts of the head, such as the eye, brain, and mouth areas, supporting its role for barbel development.

Collaboration


Dive into the Zhanjiang Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge