Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jason D. Salter is active.

Publication


Featured researches published by Jason D. Salter.


FEBS Letters | 2004

Calcium and mitochondria.

Thomas E. Gunter; David I. Yule; Karlene K. Gunter; Roman A. Eliseev; Jason D. Salter

The literature suggests that the physiological functions for which mitochondria sequester Ca2+ are (1) to stimulate and control the rate of oxidative phosphorylation, (2) to induce the mitochondrial permeability transition (MPT) and perhaps apoptotic cell death, and (3) to modify the shape of cytosolic Ca2+ pulses or transients. There is strong evidence that intramitochondrial Ca2+ controls both the rate of ATP production by oxidative phosphorylation and induction of the MPT. Since the results of these processes are so divergent, the signals inducing them must not be ambiguous. Furthermore, as pointed out by Balaban [J. Mol. Cell. Cardiol. 34 (2002 ) 11259–11271], for any repetitive physiological process dependent on intramitochondrial free Ca2+ concentration ([Ca2+]m), a kind of intramitochondrial homeostasis must exist so that Ca2+ influx during the pulse is matched by Ca2+ efflux during the period between pulses to avoid either Ca2+ buildup or depletion. In addition, mitochondrial Ca2+ transport modifies both spatial and temporal aspects of cytosolic Ca2+ signaling. Here, we look at the amounts of Ca2+ necessary to mediate the functions of mitochondrial Ca2+ transport and at the mechanisms of transport themselves in order to set up a hypothesis about how the mechanisms carry out their roles. The emphasis here is on isolated mitochondria and on general mitochondrial properties in order to focus on how mitochondria alone may function to fulfill their physiological roles even though the interactions of mitochondria with other organelles, particularly with endoplasmic and sarcoplasmic reticulum [Sci. STKE re1 (2004) 1–9], may also influence this story.


Journal of Biological Chemistry | 2006

Nanostructures of APOBEC3G Support a Hierarchical Assembly Model of High Molecular Mass Ribonucleoprotein Particles from Dimeric Subunits

Joseph E. Wedekind; Richard Gillilan; Alena Janda; Jolanta Krucinska; Jason D. Salter; Ryan P. Bennett; Jay Raina; Harold C. Smith

Human APOBEC3G (hA3G) is a cytidine deaminase that restricts human immunodeficiency virus (HIV)-1 infection in a vif (the virion infectivity factor from HIV)-dependent manner. hA3G from HIV-permissive activated CD4+ T-cells exists as an inactive, high molecular mass (HMM) complex that can be transformed in vitro into an active, low molecular mass (LMM) variant comparable with that of HIV-non-permissive CD4+ T-cells. Here we present low resolution structures of hA3G in HMM and LMM forms determined by small angle x-ray scattering and advanced shape reconstruction methods. The results show that LMM particles have an extended shape, dissimilar to known cytidine deaminases, featuring novel tail-to-tail dimerization. Shape analysis of LMM and HMM structures revealed how symmetric association of dimers could lead to minimal HMM variants. These observations imply that the disruption of cellular HMM particles may require regulation of protein-RNA, as well as protein-protein interactions, which has implications for therapeutic development.


Journal of Neurochemistry | 2003

Determination of the oxidation states of manganese in brain, liver, and heart mitochondria

Thomas E. Gunter; Lisa M. Miller; Claire E. Gavin; Roman A. Eliseev; Jason D. Salter; Linas Buntinas; Andrei Alexandrov; Sean Hammond; Karlene K. Gunter

Excess brain manganese can produce toxicity with symptoms that resemble those of Parkinsonism and causes that remain elusive. Manganese accumulates in mitochondria, a major source of superoxide, which can oxidize Mn2+ to the powerful oxidizing agent Mn3+. Oxidation of important cell components by Mn3+ has been suggested as a cause of the toxic effects of manganese. Determining the oxidation states of intramitochondrial manganese could help to identify the dominant mechanism of manganese toxicity. Using X‐ray absorbance near edge structure (XANES) spectroscopy, we have characterized the oxidation state of manganese in mitochondria isolated from brain, liver, and heart over concentrations ranging from physiological to pathological. Results showed that (i) spectra from different model manganese complexes of the same oxidation state were similar to each other and different from those of other oxidation states and that the position of the absorption edge increases with oxidation state; (ii) spectra from intramitochondrial manganese in isolated brain, heart and liver mitochondria were virtually identical; and (iii) under these conditions intramitochondrial manganese exists primarily as a combination of Mn2+ complexes. No evidence for Mn3+ was detected in samples containing more than endogenous manganese levels, even after incubation under conditions promoting reactive oxygen species (ROS) production. While the presence of Mn3+ complexes cannot be proven in the spectrum of endogenous mitochondrial manganese, the shape of this spectrum could suggest the presence of Mn3+ near the limit of detection, probably as MnSOD.


Trends in Biochemical Sciences | 2016

The APOBEC Protein Family: United by Structure, Divergent in Function

Jason D. Salter; Ryan P. Bennett; Harold C. Smith

The APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of proteins have diverse and important functions in human health and disease. These proteins have an intrinsic ability to bind to both RNA and single-stranded (ss) DNA. Both function and tissue-specific expression varies widely for each APOBEC protein. We are beginning to understand that the activity of APOBEC proteins is regulated through genetic alterations, changes in their transcription and mRNA processing, and through their interactions with other macromolecules in the cell. Loss of cellular control of APOBEC activities leads to DNA hypermutation and promiscuous RNA editing associated with the development of cancer or viral drug resistance, underscoring the importance of understanding how APOBEC proteins are regulated.


Journal of Biological Chemistry | 2008

APOBEC3G subunits self-associate via the C-terminal deaminase domain.

Ryan P. Bennett; Jason D. Salter; Xiang Liu; Joseph E. Wedekind; Harold C. Smith

Human APOBEC3G (hA3G) is a cytidine deaminase active on HIV single-stranded DNA. Small angle x-ray scattering and molecular envelope restorations predicted a C-terminal dimeric model for RNA-depleted hA3G in solution. Each subunit was elongated, suggesting that individual domains of hA3G are solvent-exposed and therefore may interact with other macromolecules even as isolated substructures. In this study, co-immunoprecipitation and in-cell quenched fluorescence resonance energy transfer assays reveal that hA3G forms RNA-independent oligomers through interactions within its C terminus. Residues 209–336 were necessary and sufficient for homoligomerization. N-terminal domains of hA3G were unable to multimerize but remained functional for Gag and viral infectivity factor (Vif) interactions when expressed apart from the C terminus. These findings corroborate the small angle x-ray scattering structural model and are instructive for development of high throughput screens that target specific domains and their functions to identify HIV/AIDS therapeutics.


Biochemistry | 2009

A hydrodynamic analysis of APOBEC3G reveals a monomer-dimer-tetramer self-association that has implications for anti-HIV function.

Jason D. Salter; Jolanta Krucinska; Jay Raina; Harold C. Smith; Joseph E. Wedekind

The innate antiviral factor APOBEC3G (A3G) possesses RNA binding activity and deaminates HIV-1 DNA. High-molecular mass forms of A3G can be isolated from a variety of cell types but exhibit limited deaminase activity relative to low-molecular mass species prepared under RNA-depleted conditions. To investigate the fundamental oligomeric state and shape of A3G, we conducted sedimentation velocity analyses of the pure enzyme under RNA-deficient conditions. The results reveal a predominant dimer in equilibrium with minor monomeric and tetrameric species. Hydrodynamic modeling of the dimer supports an extended cylindrical shape that assembles into an elongated tetramer. Overall, the results provide physical restraints for the A3G quaternary structure that have implications for modulating antiviral function.


Wiley Interdisciplinary Reviews - Rna | 2014

The multifaceted roles of RNA binding in APOBEC cytidine deaminase functions.

Kimberly Prohaska; Ryan P. Bennett; Jason D. Salter; Harold C. Smith

Cytidine deaminases have important roles in the regulation of nucleoside/deoxynucleoside pools for DNA and RNA synthesis. The APOBEC family of cytidine deaminases (named after the first member of the family that was described, Apolipoprotein B mRNA Editing Catalytic Subunit 1, also known as APOBEC1 or A1) is a fascinating group of mutagenic proteins that use RNA and single‐stranded DNA (ssDNA) as substrates for their cytidine or deoxycytidine deaminase activities. APOBEC proteins and base‐modification nucleic acid editing have been the subject of numerous publications, reviews, and speculation. These proteins play diverse roles in host cell defense, protecting cells from invading genetic material, enabling the acquired immune response to antigens and changing protein expression at the level of the genetic code in mRNA or DNA. The amazing power these proteins have for interphase cell functions relies on structural and biochemical properties that are beginning to be understood. At the same time, the substrate selectivity of each member in the family and their regulation remains to be elucidated. This review of the APOBEC family will focus on an open question in regulation, namely what role the interactions of these proteins with RNA have in editing substrate recognition or allosteric regulation of DNA mutagenic and host‐defense activities. WIREs RNA 2014, 5:493–508. doi: 10.1002/wrna.1226


Biochimica et Biophysica Acta | 2003

Bcl-2 and tBid proteins counter-regulate mitochondrial potassium transport.

Roman A. Eliseev; Jason D. Salter; Karlene K. Gunter; Thomas E. Gunter

The mechanism of cytochrome c release from mitochondria in apoptosis remains obscure, although it is known to be regulated by bcl-2 family proteins. Here we describe a set of novel apoptotic phenomena--stimulation of the mitochondrial potassium uptake preceding cytochrome c release and regulation of such potassium uptake by bcl-2 family proteins. As a result of increased potassium uptake, mitochondria undergo moderate swelling sufficient to release cytochrome c. Overexpression of bcl-2 protein prevented the mitochondrial potassium uptake as well as cytochrome c release in apoptosis. Bcl-2 was found to upregulate the mitochondrial potassium efflux mechanism--the K/H exchanger. Specific activation of the mitochondrial K-uniporter led to cytochrome c release, which was inhibited by bcl-2. tBid had an opposite effect-it stimulated mitochondrial potassium uptake resulting in cytochrome c release. The described counter-regulation of mitochondrial potassium transport by bcl-2 and Bid suggests a novel view of a mechanism of cytochrome c release from mitochondria in apoptosis.


Trends in Biochemical Sciences | 2014

Structural insights for HIV-1 therapeutic strategies targeting Vif

Jason D. Salter; Guillermo A. Morales; Harold C. Smith

HIV-1 viral infectivity factor (Vif) is a viral accessory protein that is required for HIV-1 infection due largely to its role in recruiting antiretroviral factors of the APOBEC3 (apolipoprotein B editing catalytic subunit-like 3) family to an E3 ubiquitin ligase complex for polyubiquitylation and proteasomal degradation. The crystal structure of the (near) full-length Vif protein in complex with Elongin (Elo)B/C, core-binding factor (CBF)β and Cullin (Cul)5 revealed that Vif has a novel structural fold. In our opinion the structural data revealed not only the protein-protein interaction sites that determine Vif stability and interaction with cellular proteins, but also motifs driving Vif homodimerization, which are essential in Vif functionality and HIV-1 infection. Vif-mediated protein-protein interactions are excellent targets for a new class of antiretroviral therapeutics to combat AIDS.


Biochemistry | 2012

Core-binding factor β increases the affinity between human Cullin 5 and HIV-1 Vif within an E3 ligase complex.

Jason D. Salter; Geoffrey M. Lippa; Ivan A. Belashov; Joseph E. Wedekind

HIV-1 Vif masquerades as a receptor for a cellular E3 ligase harboring Elongin B, Elongin C, and Cullin 5 (EloB/C/Cul5) proteins that facilitate degradation of the antiretroviral factor APOBEC3G (A3G). This Vif-mediated activity requires human core-binding factor β (CBFβ) in contrast to cellular substrate receptors. We observed calorimetrically that Cul5 binds tighter to full-length Vif((1-192))/EloB/C/CBFβ (K(d) = 5 ± 2 nM) than to Vif((95-192))/EloB/C (K(d) = 327 ± 40 nM), which cannot bind CBFβ. A comparison of heat capacity changes supports a model in which CBFβ prestabilizes Vif((1-192)) relative to Vif((95-192)), consistent with a stronger interaction of Cul5 with Vifs C-terminal Zn(2+)-binding motif. An additional interface between Cul5 and an N-terminal region of Vif appears to be plausible, which has therapeutic design implications.

Collaboration


Dive into the Jason D. Salter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa M. Miller

Brookhaven National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge